Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364137

RESUMO

Helicobacter pylori is a Gram-negative, microaerophilic, curved-rod, flagellated bacterium commonly found in the stomach mucosa and associated with different gastrointestinal diseases. With high levels of prevalence worldwide, it has developed resistance to the antibiotics used in its therapy. Brazilian red propolis has been studied due to its biological properties, and in the literature, it has shown promising antibacterial activities. The aim of this study was to evaluate anti-H. pylori from the crude hydroalcoholic extract of Brazilian red propolis (CHEBRP). For this, in vitro determination of the minimum inhibitory and bactericidal concentration (MIC/MBC) and synergistic activity and in vivo, microbiological, and histopathological analyses using Wistar rats were carried out using CHEBRP against H. pylori strains (ATCC 46523 and clinical isolate). CHEBRP presented MIC/MBC of 50 and 100 µg/mL against H. pylori strains (ATCC 43526 and clinical isolate, respectively) and tetracycline MIC/MBC of 0.74 µg/mL. The association of CHEBRP with tetracycline had an indifferent effect. In the stomach mucosa of rats, all treatments performed significantly decreased the number of H. pylori, and a concentration of 300 mg/kg was able to modulate the inflammatory response in the tissue. Therefore, CHEBRP showed promising anti-H. pylori in in vitro and in vivo assays.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Própole , Ratos , Animais , Própole/farmacologia , Própole/uso terapêutico , Brasil , Ratos Wistar , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Imunidade , Tetraciclinas/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia
2.
J Toxicol Environ Health A ; 84(14): 582-592, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33825664

RESUMO

Styrax camporum Pohl, a typical species from the Brazilian cerrado, commonly known as "benjoeiro", is used to treat gastroduodenal diseases. In previous studies carried out by our research group, hydroalcoholic extract of S. camporum stems (SCHE) exhibited antigenotoxic and antiproliferative effects. For a comparative analysis of the chemopreventive effect of SCHE, the aim of this study was to investigate the influence of SCHE against carcinogen 1,2-dimethylhydrazine (DMH)-induced DNA damage and pre-neoplastic lesions in Wistar rat colon. Animals were treated orally with SCHE at 250, 500 or 1000 mg/kg body weight in conjunction with a subcutaneous injection of DMH. DNA damage was assessed using the comet assay while tpre-neoplastic lesions by aberrant crypt foci (ACF) assay. The following hepatic oxidative stress markers were determined including activities of catalase (CAT) and glutathione S-transferase (GST) as well as levels of reduced glutathione (GSH) and malondialdehyde (MDA). Treatment with SCHE was not genotoxic or carcinogenic at the highest dose tested (1000 mg/kg b.w.). The extract effectively inhibited DNA damage and pre-neoplastic lesions induced by DMH administration at all concentrations tested. Measurement of CAT, and GST activities and levels of GSH showed that SCHE did not reduce oxidative processes. In contrast, treatment with SCHE (1000 mg/kg b.w.) decreased liver MDA levels. Taken together, these findings suggested the chemopreventive effect attributed to SCHE in colon carcinogenesis, may be related to its capacity to inhibit DNA damage as well as an antioxidant action associated with its chemical constituents egonol and homoegonol.


Assuntos
Anticarcinógenos/farmacologia , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Styrax/química , Animais , Carcinógenos/farmacologia , Carcinógenos/toxicidade , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ensaio Cometa , Dimetilidrazinas/farmacologia , Dimetilidrazinas/toxicidade , Masculino , Extratos Vegetais/química , Caules de Planta/química , Substâncias Protetoras/química , Ratos , Ratos Wistar
3.
Biomed Pharmacother ; 129: 110467, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32603890

RESUMO

The microorganisms that constitute the oral microbiome can cause oral diseases, including dental caries and endodontic infections. The use of natural products could help to overcome bacterial resistance to the antimicrobials that are currently employed in clinical therapy. This study assessed the antimicrobial activity of the Copaifera pubiflora oleoresin and of the compounds isolated from this resin against oral bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays provided values ranging from 6.25 to > 400 µg/mL for the C. pubiflora oleoresin and its isolated compounds. The fractional inhibitory concentration index (FICI) assay showed that the oleoresin and chlorhexidine did not act synergistically. All the tested bacterial strains formed biofilms. MICB50 determination revealed inhibitory action: values varied from 3.12-25 µg/mL for the oleoresin, and from 0.78 to 25 µg/mL for the ent-hardwickiic acid. Concerning biofilm eradication, the C. pubiflora oleoresin and hardwickiic acid eradicated 99.9 % of some bacterial biofilms. Acid resistance determination showed that S. mutans was resistant to acid in the presence of the oleoresin and ent-hardwickiic acid at pH 4.0, 4.5, and 5.0 at all the tested concentrations. Analysis of DNA/RNA and protein release by the cell membrane demonstrated that the oleoresin and hardwiickic acid damaged the bacterial membrane irreversibly, which affected membrane integrity. Therefore, the C. pubiflora oleoresin and ent-hardwickiic acid have potential antibacterial effect and can be used as new therapeutic alternatives to treat oral diseases such as dental caries and endodontic infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Diterpenos/farmacologia , Fabaceae , Boca/microbiologia , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Diterpenos/isolamento & purificação , Fabaceae/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Virulência
4.
Anaerobe ; 52: 43-49, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29885640

RESUMO

Diterpenes are an important class of plant metabolites that can be used in the search for new antibacterial agents. ent-Copalic acid (CA), the major diterpene in Copaifera species exudates, displays several pharmacological properties. This study evaluates the CA antibacterial potential against the anaerobic bacteria Peptostreptococcus anaerobius and Actinomyces naeslundii. Antimicrobial assays included time-kill and biofilm inhibition and eradication assays. Time-kill assays conducted for CA concentrations between 6.25 and 12.5 µg/mL evidenced bactericidal activity within 72 h. CA combined with chlorhexidine dihydrochloride (CHD) exhibited bactericidal action against P. anaerobius within 6 h of incubation. As for A. naeslundii, the same combination reduced the number of microorganisms by over 3 log10 at 24 h and exerted a bactericidal effect at 48 h of incubation. CA at 500 and 2000 µg/mL inhibited P. anaerobius and A. naeslundii biofilm formation by at least 50%, respectively. CA at 62.5 and 1.000 µg/mL eradicated 99.9% of pre-formed P. anaerobius and A. naeslundii biofilms, respectively. These results indicated that CA presents in vitro antibacterial activity and is a potential biofilm inhibitory agent. This diterpene may play an important role in the search for novel sources of agents that can act against anaerobic bacteria.


Assuntos
Actinomyces/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Diterpenos/farmacologia , Peptostreptococcus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Actinomyces/fisiologia , Fabaceae/química , Testes de Sensibilidade Microbiana , Peptostreptococcus/fisiologia
5.
J Water Health ; 16(2): 311-320, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29676766

RESUMO

The use of poorly treated water in hemodialysis centers may lead to fungal contamination, which poses a serious threat to immunologically debilitated hemodialysis patients. This study aimed to isolate and identify yeast species in the water of a Brazilian hemodialysis center by using classic microbiological techniques and Raman spectroscopy. For 12 months, a total of 288 water samples were collected from different points of the hemodialysis treatment distribution center. One hundred and forty-six yeast species were isolated and identified in the samples that tested positive for the presence of yeasts such as Candida parapsilosis (100 isolates, or 68.50%), C. guilliermondii (17 isolates, or 11.65%), Rhodotorula mucilaginosa (23 isolates, or 15.75%), R. glutinis (three isolates, or 2.05%), and Trichosporon inkin (three isolates, or 2.05%). Yeast susceptibility to the antifungal fluconazole was also assayed. Only two C. guilliermondii isolates were resistant to fluconazole: the minimal inhibitory concentrations were higher than 64 µg/mL. The different yeast species present in the water of a Brazilian hemodialysis center call for more effective water disinfection procedures in this unit. Raman spectroscopy is an excellent tool to identify yeast species and is potentially applicable in routine water monitoring in hemodialysis units.


Assuntos
Monitoramento Ambiental , Análise Espectral Raman , Microbiologia da Água , Leveduras/crescimento & desenvolvimento , Brasil , Fluconazol , Humanos , Testes de Sensibilidade Microbiana , Diálise Renal
6.
J Toxicol Environ Health A ; 81(5): 116-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29286884

RESUMO

In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS: 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.


Assuntos
Antimutagênicos/farmacologia , Diterpenos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Animais , Ensaio Cometa , Cricetulus , Fibroblastos/efeitos dos fármacos , Pulmão , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade
7.
Anaerobe ; 47: 201-208, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28627377

RESUMO

The search for new, effective and safe antimicrobial compounds from plant sources has continued to play an important role in the maintenance of human health since ancient times. Such compounds can be used to help to eradicate microorganisms from the root canal system, preventing/healing periapical diseases. Mikania glomerata (Spreng.), commonly known as "guaco," is a native climbing plant from Brazil that displays a wide range of pharmacological properties. Many of its activities have been attributed to its phytochemical composition, which is mainly composed of diterpenes, such as ent-kaurenoic acid (KA). The present study evaluated the potential activity of an ent-kaurenoic-rich (KA) extract from Mikania glomerata (i.e. Mikania glomerata extract/MGE) and its major compound KA against bacteria that can cause endodontic infections. Time-kill assays were conducted and the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), anti-biofilm activity, and synergistic antimicrobial activity of MGE and KA were determined. The MGE exhibited MIC and MBC values, which ranged from 6.25 to 100 µg/mL and 12.5 to 200 µg/mL respectively. The MIC and MBC results obtained for the KA, ranged from 3.12 to 100 µg/mL and 3.12 to 200 µg/mL respectively. Time-kill and anti-biofilm activity assays conducted for KA at concentrations between 3.12 and 12.5 µg/mL exhibited bactericidal activity between 6 and 72 h of incubation and 50% inhibition of biofilm formation for Porphyromonas gingivalis (clinical isolate), Propionibacterium acnes (ATCC 6919), Prevotella nigrescens (ATCC 33563), P. melaninogenica (ATCC 25845), Aggregatibacter actinomycetemcomitans (ATCC 43717). For synergistic antimicrobial activity, KA combined with chlorhexidine dichlorohydrate (CHD) had an additive effect with increased efficacy against P. gingivalis (clinical isolate) compared to CHD alone. It was concluded that M. glomerata extract and its major compound ent-kaurenoic acid (KA) showed in vitro antibacterial activity, the latter being a potential biofilm inhibitory agent. They may play important roles in the search for novel sources of agents that can act against bacteria present in endodontic infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Diterpenos/farmacologia , Mikania/química , Extratos Vegetais/farmacologia , Pulpite/microbiologia , Antibacterianos/isolamento & purificação , Bactérias/isolamento & purificação , Biofilmes/efeitos dos fármacos , Brasil , Clorexidina/farmacologia , Diterpenos/isolamento & purificação , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação
8.
J Toxicol Environ Health A ; 79(24): 1201-1210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27767392

RESUMO

The aim of this study was to examine the cytotoxic and genotoxic potential of a hydroethanolic extract of Schefflera vinosa (SV), a plant with schistosomicidal activity, as well as its influence on DNA damage induced by different mutagens, methyl methane sulfonate (MMS) and hydrogen peroxide (H2O2), in V79 cells and Swiss mice. Schefflera vinosa extract produced cytotoxicity at concentrations of 312.5 µg/ml or higher using the XTT cell proliferation assay kit. Treatment of V79 cell cultures with the highest SV concentration tested (150 µg/ml) significantly increased the frequency of micronuclei (MN) compared to controls. All SV concentrations significantly reduced the frequency of MN induced by hydrogen peroxide in V79 cell cultures. Further, SV was able to scavenge free radicals in the DPPH assay. In the in vivo test system, treatment with the highest dose tested (1,000 mg/kg body weight) induced a significant rise in frequency of DNA damage using the comet assay. However, animals treated with different doses of SV demonstrated absence of genotoxicity in the bone marrow MN test. For assessment of modulatory effects, the lower concentration of SV (250 mg/kg body weight) administered to MMS-treated mice significantly reduced frequency of DNA damage compared to the positive control (MMS alone). In contrast, the highest concentration tested (1,000 mg/kg body weight) significantly increased the rate of MN induced by MMS. The lack of genotoxic damage at biologically relevant SV concentrations, as well as the SV-mediated antigenotoxic and antioxidant activities, indicate the potential therapeutic usefulness of this plant extract. These activities may be attributed, at least in part, to the flavonoid quercitrin, its major component.


Assuntos
Araliaceae/química , Citotoxinas/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Células CHO , Ensaio Cometa , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/farmacologia , Masculino , Metanossulfonato de Metila/farmacologia , Camundongos , Testes para Micronúcleos , Mutagênicos/farmacologia , Oxirredução
9.
J Med Microbiol ; 65(9): 937-950, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27452156

RESUMO

Copaifera trapezifolia Hayne occurs in the Atlantic Rainforest, which is considered one of the most important and endangered tropical forests on the planet. Although literature works have described many Copaifera spp., their biological activities remain little known. In the present study, we aimed to evaluate (1) the potential of the hydroalcoholic extract from C. trapezifolia leaves (CTE) to act against the causative agents of tooth decay and apical periodontitis and (2) the cytotoxicity and mutagenicity of CTE to ensure that it is safe for subsequent application. Concerning the tested bacteria, the MIC and the minimum bactericidal concentration of CTE varied between 100 and 400 µg ml-1. The time-kill assay conducted at a CTE concentration of 100 µg ml-1 evidenced bactericidal activity against Porphyromonas gingivalis (ATCC 33277) and Peptostreptococcus micros (clinical isolate) within 72 h. CTE at 200 µg ml-1 inhibited Porphyromonas gingivalis and Peptostreptococcus micros biofilm formation by at least 50 %. A combination of CTE with chlorhexidine dichlorohydrate did not prompt any synergistic effects. The colony-forming assay conducted on V79 cells showed that CTE was cytotoxic at concentrations above 156 µg ml-1. CTE exerted mutagenic effect on V79 cells, but the micronucleus test conducted on Swiss mice and the Ames test did not reveal any mutagenicity. Therefore, the use of standardized and safe extracts could be an important strategy to develop novel oral care products with antibacterial action. These extracts could also serve as a source of compounds for the discovery of new promising biomolecules.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/toxicidade , Produtos Biológicos/farmacologia , Produtos Biológicos/toxicidade , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Animais , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Testes de Mutagenicidade , Peptostreptococcus/efeitos dos fármacos , Peptostreptococcus/fisiologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia
10.
Anaerobe ; 40: 18-27, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27118478

RESUMO

Oral infections such as periodontitis and tooth decay are the most common diseases of humankind. Oleoresins from different copaifera species display antimicrobial and anti-inflammatory activities. Copaifera reticulata is the commonest tree of this genus and grows abundantly in several Brazilian states, such as Pará, Amazonas, and Ceará. The present study has evaluated the chemical composition and antimicrobial potential of the Copaifera reticulata oleoresin (CRO) against the causative agents of tooth decay and periodontitis and has assessed the CRO cytotoxic potential. Cutting edge analytical techniques (GC-MS and LC-MS) aided the chemical characterization of CRO. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the Minimum Inhibitory Concentration of Biofilm (MICB50), Time Kill Assay, and Checkerboard Dilution. Conduction of XTT assays on human lung fibroblasts (GM07492-A cells) helped to examine the CRO cytotoxic potential. Chromatographic analyses revealed that the major constituents of CRO were ß-bisabolene, trans-α-bergamotene, ß-selinene, α-selinene, and the terpene acids ent-agathic-15-methyl ester, ent-copalic acid, and ent-polyalthic acid. MIC and MBC results ranged from 6.25 to 200 µg/mL against the tested bacteria. The time-kill assay conducted with CRO at concentrations between 50 and 100 µg/mL showed bactericidal activity against Fusobacterium nucleatum (ATCC 25586) and Streptococcus mitis (ATCC 49456) after 4 h, Prevotella nigrescens (ATCC 33563) after 6 h, Porphyromonas gingivalis (ATCC 33277) and Lactobacillus casei (clinical isolate) after 12 h, and Streptococcus salivarius (ATCC 25975) and Streptococcus mutans (ATCC 25175) after 18 h. The fractional inhibitory concentration indexes (FICIs) revealed antagonistic interaction for Lactobacillus casei (clinical isolate), indifferent effect for Porphyromonas gingivalis (ATCC 33277), Fusobacterium nucleatum (ATCC 25586), Prevotella nigrescens (ATCC 33563), and Streptococcus salivarius (ATCC 25975), and additive effect for Streptococcus mutans (ATCC 25175) and Streptococcus mitis (ATCC 49456). Treatment of GM07492-A cells with CRO demonstrated that concentrations up to 39 µg/mL significantly reduced cell viability as compared to the negative control, being IC50 equal to 51.85 ± 5.4 µg/mL. These results indicated that CRO plays an important part in the search for novel sources of agents that can act against oral pathogens.


Assuntos
Antibacterianos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella nigrescens/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Compostos Bicíclicos com Pontes/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cárie Dentária/microbiologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/isolamento & purificação , Testes de Sensibilidade Microbiana , Sesquiterpenos Monocíclicos , Periodontite/microbiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/isolamento & purificação , Prevotella nigrescens/crescimento & desenvolvimento , Prevotella nigrescens/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/isolamento & purificação , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/crescimento & desenvolvimento , Streptococcus salivarius/isolamento & purificação , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA