Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(7): e0157487, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27392042

RESUMO

The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.


Assuntos
Fator Natriurético Atrial/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dopamina/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Diurese/efeitos dos fármacos , Dopamina/urina , Rim/metabolismo , Túbulos Renais/metabolismo , Masculino , Natriurese/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
J Physiol Biochem ; 67(2): 243-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21210317

RESUMO

Dopamine and urodilatin promote natriuresis and diuresis through a common pathway that involves reversible deactivation of renal Na+, K+-ATPase. We have reported that urodilatin enhances dopamine uptake in outer renal cortex through the natriuretic peptide type A receptor. Moreover, urodilatin enhances dopamine-induced inhibition of Na+, K+-ATPase activity. The objective of the present work was to investigate the intracellular signals involved in urodilatin effects on dopamine uptake in renal cortex of kidney rats. We show that urodilatin-elicited increase in ³H-dopamine was blunted by methylene blue (10 µM), a non-specific guanylate cyclase inhibitor, and by phorbol-12-myristate-13-acetate (1 µM), a particulate guanylate cyclase inhibitor, but not by 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (10 µM), a specific soluble guanylate cyclase inhibitor; therefore the involvement of particulate guanylate cyclase on urodilatin mediated dopamine uptake was confirmed. Cyclic guanosine monophosphate and proteinkinase G were also implicated in the signaling pathway, since urodilatin effects were mimicked by the analog 125 µM 8-Br-cGMP and blocked by the proteinkinase G-specific inhibitor, KT-5823 (1 µM). In conclusion, urodilatin increases dopamine uptake in renal cortex stimulating natriuretic peptide type A receptor, which signals through particulate guanylate cyclase activation, cyclic guanosine monophosphate generation, and proteinkinase G activation. Dopamine and urodilatin may achieve their effects through a common pathway that involves deactivation of renal Na+, K+-ATPase, reinforcing their natriuretic and diuretic properties.


Assuntos
Fator Natriurético Atrial/farmacologia , Diuréticos/farmacologia , Dopamina/metabolismo , Rim/metabolismo , Animais , Guanilato Ciclase/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Nephron Physiol ; 115(1): p1-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20389130

RESUMO

BACKGROUND/AIMS: Dopamine (DA) uptake inhibition in the renal cortex, elicited by angiotensin II (ANG II), is mediated by AT(1) receptors and signals through the phospholipase C pathway and activation of protein kinase C and CaM-kinase II. By this indirect way, ANG II stimulates renal Na(+),K(+)-ATPase activity through DA intracellular reduction. In the present work, we continued to study different aspects of renal DA metabolism in DA-ANG II interaction, such as DA synthesis, release, catabolism and turnover. METHODS: ANG II effects on DA synthesis, release, catabolism and turnover were measured in samples from the outer renal cortex of Sprague-Dawley rats. RESULTS: ANG II reduced renal aromatic acid decarboxylate activity without affecting basal secretion of DA or its KCl-induced release. Moreover, ANG II enhanced monoamine oxidase activity without altering catechol-o-methyl transferase activity and increased DA turnover. CONCLUSION: Current results as well as previous findings show that ANG II modifies DA metabolism in rat renal cortex by reducing DA uptake, decreasing DA synthesis enzyme activity and increasing monoamine oxidase activity, and DA turnover. Together, all these effects may reduce DA accumulation into renal cells and decrease its endogenous content and availability. This would prevent D1 receptor recruitment and stimulation, while diminishing DA inhibition of Na(+),K(+)-ATPase activity and stimulating sodium reabsorption.


Assuntos
Angiotensina II/administração & dosagem , Angiotensina II/metabolismo , Dopamina/metabolismo , Rim/metabolismo , Animais , Relação Dose-Resposta a Droga , Rim/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA