Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733521

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Assuntos
Doença de Alzheimer , Aquaporina 4 , Astrócitos , Estreptozocina , Astrócitos/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Aquaporina 4/metabolismo , Conexina 43/metabolismo , Barreira Hematoencefálica/metabolismo , Água/metabolismo , Hipocampo/metabolismo , Ratos Wistar , Ratos , Modelos Animais de Doenças
2.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611864

RESUMO

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Assuntos
Passiflora , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Carotenoides , Frutas
3.
Metabolites ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535311

RESUMO

Astrocytes play fundamental roles in the maintenance of brain homeostasis. The dysfunction of these cells is widely associated with brain disorders, which are often characterized by variations in the astrocyte protein markers GFAP and S100B, in addition to alterations in some of its metabolic functions. To understand the role of astrocytes in neurodegeneration mechanisms, we induced some of these metabolic alterations, such as energy metabolism, using methylglyoxal (MG) or fluorocitrate (FC); and neuroinflammation, using lipopolysaccharide (LPS) and streptozotocin (STZ), which is used for inducing Alzheimer's disease (AD) in animal models. We showed that MG, LPS, STZ and FC similarly caused astrocyte dysfunction by increasing GFAP and reducing S100B secretion. In the context of AD, STZ caused an amyloid metabolism impairment verified by increases in Aß1-40 peptide content and decreases in the amyloid degradation enzymes, IDE and NEP. Our data contribute to the understanding of the role of astrocytes in brain injury mechanisms and suggest that STZ is suitable for use in vitro models for studying the role of astrocytes in AD.

4.
Nutr Res ; 122: 101-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215571

RESUMO

Obesity is a health problem that involves fat accumulation in adipose and other tissues and causes cell dysfunction. Long-chain saturated fatty acids can induce and propagate inflammation, which may also contribute to the brain alterations found in individuals with obesity. Fatty acids accumulate in astrocytes in situations of blood‒brain barrier disruption, such as inflammatory conditions. Furthermore, the increase in tumor necrosis factor-alpha (TNF-α) and S100 calcium-binding protein B (S100B) secretion is considered an essential component of the inflammatory response. We hypothesize that through their action on astrocytes, long-chain saturated fatty acids mediate some of the brain alterations observed in individuals with obesity. Here, we investigate the direct effect of long-chain fatty acids on astrocytes. Primary astrocyte cultures were incubated for 24 hours with myristic, palmitic, stearic, linoleic, or α-linolenic acids (25-100 µM). All saturated fatty acids tested led to an increase in TNF-α secretion, but only palmitic acid, one of the most common fatty acids, increased S100B secretion, indicating that S100B secretion is probably not caused in response to TNF-α release. Palmitic acid also caused nuclear migration of nuclear factor kappa B. Long-chain saturated fatty acids did not alter cell viability or redox status. In conclusion, long-chain saturated fatty acids can alter astrocytic homeostasis and may contribute to brain disorders associated with obesity, such as neuroinflammation.


Assuntos
Ácido Palmítico , Fator de Necrose Tumoral alfa , Humanos , Ácido Palmítico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Astrócitos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Obesidade , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
5.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068900

RESUMO

S100B, a homodimeric Ca2+-binding protein, is produced and secreted by astrocytes, and its extracellular levels have been used as a glial marker in brain damage and neurodegenerative and psychiatric diseases; however, its mechanism of secretion is elusive. We used primary astrocyte cultures and calcium measurements from real-time fluorescence microscopy to investigate the role of intracellular calcium in S100B secretion. In addition, the dimethyl sulfoxide (DMSO) effect on S100B was investigated in vitro and in vivo using Wistar rats. We found that DMSO, a widely used vehicle in biological assays, is a powerful S100B secretagogue, which caused a biphasic response of Ca2+ mobilization. Our data show that astroglial S100B secretion is triggered by the increase in intracellular Ca2+ and indicate that this increase is due to Ca2+ mobilization from the endoplasmic reticulum. Also, blocking plasma membrane Ca2+ channels involved in the Ca2+ replenishment of internal stores decreased S100B secretion. The DMSO-induced S100B secretion was confirmed in vivo and in ex vivo hippocampal slices. Our data support a nonclassic vesicular export of S100B modulated by Ca2+, and the results might contribute to understanding the mechanism underlying the astroglial release of S100B.


Assuntos
Astrócitos , Dimetil Sulfóxido , Ratos , Animais , Ratos Wistar , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Astrócitos/metabolismo , Colforsina/farmacologia , Secretagogos/farmacologia , Cálcio/metabolismo , Fatores de Crescimento Neural/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Retículo Endoplasmático/metabolismo , Células Cultivadas
6.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058025

RESUMO

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/metabolismo , Barreira Hematoencefálica/metabolismo , Astrócitos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
7.
Neurotoxicology ; 99: 322-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006911

RESUMO

Dementia is the most prevalent neurodegenerative disorder, characterized by progressive loss of memory and cognitive function. Inflammation is a major aspect in the progression of brain disorders, and inflammatory events have been associated with accelerated deterioration of cognitive function. In the present work, we investigated the impact of low-grade repeated inflammation stimuli induced by lipopolysaccharide (LPS) in hippocampal function and spatial memory. Adult male Wistar rats received a weekly injection of LPS (500 ug/kg) for sixteen weeks, eliciting systemic inflammation. Animals submitted to LPS presented impaired spatial memory and neuroinflammation. While neuronal synaptic markers such as synaptophysin and PSD-95 were unaltered, critical aspects of astrocyte homeostatic functions, such as glutamate uptake and glutathione content, were reduced. Also, glucose uptake and astrocyte lactate transporters were altered, suggesting a disturbance in the astrocyte-neuron coupling. Our present work demonstrates that long-term repeated systemic inflammation can lead to memory impairment and hippocampal metabolic disorders, especially regarding astrocyte function.


Assuntos
Astrócitos , Lipopolissacarídeos , Ratos , Animais , Masculino , Lipopolissacarídeos/toxicidade , Ratos Wistar , Transtornos da Memória/metabolismo , Inflamação/induzido quimicamente , Homeostase , Hipocampo
8.
Brain Res ; 1818: 148519, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562565

RESUMO

Curcumin is a pleiotropic molecule with well-known anti-inflammatory effects. This molecule has attracted attention due to its capacity to pass the blood-brain-barrier and modulate central nervous system (CNS) cells, such as astrocytes. Astrocytes are the most numerous CNS cells, and play a pivotal role in inflammatory damage, a common feature in neurodegenerative diseases such as Alzheimer's Disease. Although the actions of curcumin have been studied extensively in peripheral cells, few studies have investigated the effect of curcumin on astrocytes under basal and inflammatory conditions. The aim of this study was to characterize the effect of curcumin on astrocytic function (glutamatergic metabolism, GFAP and S100B), and investigate a possible synergic effect with another molecule, piperine. For this purpose, we used primary cultured astrocytes; our results showed that curcumin increases GSH and GFAP content, but decreases S100B secretion under basal conditions. Under inflammatory conditions, provoked by lipopolysaccharide (LPS), curcumin and piperine reversed the LPS-induced secretion of TNF-α, and piperine reverted the LPS-induced upregulation of GFAP content. Interestingly, curcumin decreases S100B secretion even more than LPS. These results highlight important context-dependent effects of curcumin and piperine on astrocytes. Although we did not observe synergic effects of co-treatment with curcumin and piperine, their effects were complementary, as piperine modulated GFAP content under inflammatory conditions, and curcumin modulated S100B secretion. Both curcumin and piperine had important anti-inflammatory actions in astrocytes. We herein provide new insights into the actions of curcumin in the CNS that may aid in the search for new molecular targets and possible treatments for neurological diseases.


Assuntos
Astrócitos , Curcumina , Astrócitos/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia
9.
ABCS health sci ; 48: e023226, 14 fev. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1518588

RESUMO

INTRODUCTION: Excess body weight and its comorbidities represent a major public health issue. Interventions based on diet and exercise have not only been shown to promote weight loss, but also improve overall health, including cardiovascular health. OBJECTIVE: This study aimed to evaluate the effects of a 12-week hypocaloric low-carbohydrate (CHO) diet coupled with high-intensity functional training (HIFT) on the cardiometabolic risk of overweight adults. METHODS: This is a randomized controlled trial. A total of 31 overweight adults participated in this study, divided into two groups based on the dietary intervention: reduced-CHO (R-CHO, ≤130 g/day; n=15) and adequate-CHO (A-CHO, >130 g/day; n=16). The cardiometabolic risk was assessed using lipidaemic, insulinemia, and glycaemic parameters. A two-way ANOVA with Bonferroni post hoc test was utilized to evaluate the effects of the intervention. A p-value < 0.05 was considered statistically significant. RESULTS: Participants from both groups displayed decreased low-density lipoprotein, very-low-density lipoprotein, total cholesterol, and triacylglycerol concentrations, as well as the number of risk factors for the metabolic disease after 12 weeks. The high-density lipoprotein (HDL) cholesterol concentration of both groups increased after 12 weeks, however, the result of the intragroup analysis revealed that a significant increase was only observed in the participants from the A-CHO group. CONCLUSION: Reduced or adequate CHO intake was both found to be effective in reducing cardiometabolic risk. However, improvements in HDL and final cardiometabolic classification risk indicated that CHO adequacy in the diet might be a better strategy associated with caloric restriction and HIFT.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Exercício Físico , Restrição Calórica , Sobrepeso , Dieta com Restrição de Carboidratos , Fatores de Risco Cardiometabólico , Universidades
10.
Braz J Anesthesiol ; 73(5): 570-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35569581

RESUMO

BACKGROUND: Predicting difficult direct laryngoscopies remains challenging and improvements are needed in preoperative airway assessment. We conceived two new tests (the upper airway angle and the glottic height) and assessed their association with difficult direct laryngoscopies as well as their predictive performance. METHODS: A prospective cohort was conducted with 211 patients undergoing general anesthesia for surgical procedures. We assessed the association between difficult laryngoscopies and modified Mallampati Test (MMT), Upper Lip Bite Test (ULBT), Mandibular Length (ML), Neck Circumference (NC), Mouth Opening (MO), Sternomental Distance (SMD), Thyromental Distance (TMD), Upper Airway Angle (UAA), and Glottic Height (GH). We also estimated their predictive values. RESULTS: Difficult laryngoscopy was presented by 12 patients (5.7%). Six tests were significantly associated with difficult laryngoscopies and their area under the ROC curve, and 95% CIs were as follows: UAA = 88.82 (81.86-95.78); GH = 86.43 (72.67-100); ML = 83.75 (72.77-94.74); NC = 79.17 (64.98-93.36); MO = 65.58 (45.13-86.02); and MMT = 77.89 (68.37-87.41). CONCLUSION: We have found two new features (the UAA and the GH) to be significantly associated with the occurrence of difficult direct laryngoscopies. They also presented the best predictive performance amongst the nine evaluated tests in our cohort of patients. We cannot ensure, however, these tests to be superior to other regularly used bedside tests based on our estimated 95% CIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA