Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Carcinogenesis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842162

RESUMO

Most tissues are continuously renovated through the division of stem cells and the death of old or damaged cells, which is known as cell turnover rate (CTOR). Despite being in steady state, tissues have different population dynamics and leading to diverse clonality levels. Here, we propose and test that cell population dynamics can be a cancer driver. We employed the evolutionary software esiCancer to show that CTOR, within a range comparable to what is observed in human tissues, can amplify the risk of a mutation due to ancestral selection (ANSEL). In a high CTOR tissue, a mutated ancestral cell is likely to be selected and persist over generations, which leads to a scenario of elevated ANSEL profile, characterized by few niches of large clones, which does not occur in low CTOR. We found that CTOR is significantly associated with the risk of developing cancer, even when correcting for mutation load, indicating that population dynamics per se is a cancer driver. This concept is central to understanding cancer risk and for the design of new therapeutic interventions that minimize the contribution of ANSEL in cancer growth.

2.
Int J Exp Pathol ; 105(3): 100-113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722178

RESUMO

Morphometry of striated muscle fibres is critical for monitoring muscle health and function. Here, we evaluated functional parameters of skeletal and cardiac striated muscle in two experimental models using the Morphometric Analysis of Muscle Fibre tool (MusMA). The collagen-induced arthritis model was used to evaluate the function of skeletal striated muscle and the non-alcoholic fatty liver disease model was used for cardiac striated muscle analysis. After euthanasia, we used haeamatoxylin and eosin stained sections of skeletal and cardiac muscle to perform muscle fibre segmentation and morphometric analysis. Morphometric analysis classified muscle fibres into six subpopulations: normal, regular hypertrophic, irregular hypertrophic, irregular, irregular atrophic and regular atrophic. The percentage of atrophic fibres was associated with lower walking speed (p = 0.009) and lower body weight (p = 0.026), respectively. Fibres categorized as normal were associated with maximum grip strength (p < 0.001) and higher march speed (p < 0.001). In the evaluation of cardiac striated muscle fibres, the percentage of normal cardiomyocytes negatively correlated with cardiovascular risk markers such as the presence of abdominal adipose tissue (p = .003), miR-33a expression (p = .001) and the expression of miR-126 (p = .042) Furthermore, the percentage of atrophic cardiomyocytes correlated significantly with the Castelli risk index II (p = .014). MusMA is a simple and objective tool that allows the screening of striated muscle fibre morphometry, which can complement the diagnosis of muscle diseases while providing functional and prognostic information in basic and clinical research.


Assuntos
Fibras Musculares Esqueléticas , Animais , Masculino , Prognóstico , Fibras Musculares Esqueléticas/patologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Miócitos Cardíacos/patologia , Fatores de Risco de Doenças Cardíacas
3.
Cell Commun Signal ; 22(1): 145, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388432

RESUMO

BACKGROUND: ZEB1, a core transcription factor involved in epithelial-mesenchymal transition (EMT), is associated with aggressive cancer cell behavior, treatment resistance, and poor prognosis across various tumor types. Similarly, the expression and activity of CD73, an ectonucleotidase implicated in adenosine generation, is an important marker of tumor malignancy. Growing evidence suggests that EMT and the adenosinergic pathway are intricately linked and play a pivotal role in cancer development. Therefore, this study focuses on exploring the correlations between CD73 and ZEB1, considering their impact on tumor progression. METHODS: We employed CRISPR/Cas9 technology to silence CD73 expression in cell lines derived from papillary thyroid carcinoma. These same cells underwent lentiviral transduction of a reporter of ZEB1 non-coding RNA regulation. We conducted studies on cell migration using scratch assays and analyses of cellular speed and polarity. Additionally, we examined ZEB1 reporter expression through flow cytometry and immunocytochemistry, complemented by Western blot analysis for protein quantification. For further insights, we applied gene signatures representing different EMT states in an RNA-seq expression analysis of papillary thyroid carcinoma samples from The Cancer Genome Atlas. RESULTS: Silencing CD73 expression led to a reduction in ZEB1 non-coding RNA regulation reporter expression in a papillary thyroid carcinoma-derived cell line. Additionally, it also mitigated ZEB1 protein expression. Moreover, the expression of CD73 and ZEB1 was correlated with alterations in cell morphology characteristics crucial for cell migration, promoting an increase in cell polarity index and cell migration speed. RNA-seq analysis revealed higher expression of NT5E (CD73) in samples with BRAF mutations, accompanied by a prevalence of partial-EMT/hybrid state signature expression. CONCLUSIONS: Collectively, our findings suggest an association between CD73 expression and/or activity and the post-transcriptional regulation of ZEB1 by non-coding RNA, indicating a reduction in its absence. Further investigations are warranted to elucidate the relationship between CD73 and ZEB1, with the potential for targeting them as therapeutic alternatives for cancer treatment in the near future.


Assuntos
Neoplasias da Glândula Tireoide , Fatores de Transcrição , Humanos , Câncer Papilífero da Tireoide , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , RNA não Traduzido , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
4.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334041

RESUMO

Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.


Assuntos
Divisão Celular Assimétrica , Neoplasias , Humanos , Mitose/genética , Neoplasias/genética , Células-Tronco , Diferenciação Celular
5.
J Cell Biochem ; 125(2): e30517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224178

RESUMO

Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia , Células HT29 , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
6.
Exp Cell Res ; 433(2): 113825, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866459

RESUMO

Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/metabolismo , Dacarbazina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Mitocôndrias/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
7.
Exp Cell Res ; 430(1): 113715, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429373

RESUMO

In cancer, cell migration contributes to the spread of tumor cells resulting in metastasis. Heterogeneity in the migration capacity can produce individual cells with heightened capacity leading to invasion and metastasis. Our hypothesis is that cell migration characteristics can divide asymmetrically in mitosis, allowing a subset of cells to have a larger contribution to invasion and metastasis. Therefore, our aim is to elucidate whether sister cells have different migratory capacity and analyze if this difference is defined by mitosis. Through time-lapse videos, we analyzed migration speed, directionality, maximum displacement of each trajectory, and velocity as well as cell area and polarity and then compared the values between mother-daughter cells and between sister cells of three tumor cell lines (A172, MCF7, SCC25) and two normal cell lines (MRC5 and CHO·K1 cells). We observed that daughter cells had a different migratory phenotype compared to their mothers, and one single mitosis is enough for the sisters behave like nonrelated cells. However, mitosis did not influence cell area and polarity dynamics. These findings indicates that migration performance is not heritable, and that asymmetric cell division might have an important impact on cancer invasion and metastasis, by producing cells with different migratory capacity.


Assuntos
Mitose , Células-Tronco , Movimento Celular , Divisão Celular Assimétrica , Linhagem Celular Tumoral
8.
Genes (Basel) ; 14(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37107559

RESUMO

Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"


Assuntos
Células Gigantes , Recidiva Local de Neoplasia , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Células Gigantes/metabolismo , Células Gigantes/patologia , Poliploidia , Biologia Computacional
9.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594556

RESUMO

Cancer cells have heterogeneous fitness, and this heterogeneity stems from genetic and epigenetic sources. Here, we sought to assess the contribution of asymmetric mitosis (AM) and time on the variability of fitness in sister cells. Around one quarter of sisters had differences in fitness, assessed as the intermitotic time (IMT), from 330 to 510 min. Phenotypes related to fitness, such as ERK activity (herein referring to ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively), DNA damage and nuclear morphological phenotypes were also asymmetric at mitosis or turned asymmetric over the course of the cell cycle. The ERK activity of mother cell was found to influence the ERK activity and the IMT of the daughter cells, and cells with ERK asymmetry at mitosis produced more offspring with AMs, suggesting heritability of the AM phenotype for ERK activity. Our findings demonstrate how variabilities in sister cells can be generated, contributing to the phenotype heterogeneities in tumor cells.


Assuntos
Divisão do Núcleo Celular , Mitose , Mitose/genética , Ciclo Celular , Fosforilação , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA