Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 86: 1-15, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23665147

RESUMO

PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. BIOLOGICAL SIGNIFICANCE: Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought.


Assuntos
Proteínas de Bactérias/genética , Fosfatos/metabolismo , Proteômica , Vibrio cholerae O1/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/fisiologia , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Nucleotídeos de Guanina/metabolismo , Mutação , Polifosfatos/metabolismo , Fator sigma/biossíntese , Transcriptoma , Regulação para Cima , Vibrio cholerae O1/crescimento & desenvolvimento
2.
FEMS Immunol Med Microbiol ; 63(2): 174-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22077220

RESUMO

Proteus mirabilis is an opportunistic pathogen that frequently causes complicated urinary tract infections. Among a wide spectrum of potential virulence factors, outer membrane proteins (OMPs) are critical for bacterial interactions and survival in different environments. In this work, we used a proteomic approach to assess P. mirabilis in vivo OMPs expression compared to in vitro, including iron replete and iron-restricted conditions. Three putative iron receptors, IreA, PMI0842, and PMI2596, were detected both in bacterium grown in vivo and in vitro under iron-restricted conditions. A prophage gene product, PMI1721, was detected only on in vivo growing bacterium, suggesting a potential role yet to be disclosed on the surface of P. mirabilis. Plasminogen, a host protein, was co-purified with OMPs of in vivo grown bacteria, which is in accordance with previous observations and suggests that plasminogen bound to P. mirabilis surface may be associated to virulence as seen in other bacterial pathogens. Western blots using sera of experimentally challenged mice showed that iron-regulated proteins are expressed and highly immunogenic during infection. This work confirms observations made by others for P. mirabilis and reveals details not yet described, suggesting new aspects of the bacterium pathogenesis that remain unknown.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteoma/análise , Proteus mirabilis/química , Proteus mirabilis/crescimento & desenvolvimento , Animais , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Ratos , Ratos Sprague-Dawley , Sistema Urinário/microbiologia , Fatores de Virulência/biossíntese
3.
Mol Plant Microbe Interact ; 24(5): 562-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21190439

RESUMO

Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.


Assuntos
Proteínas de Bactérias/análise , Gluconacetobacter/metabolismo , Proteoma/análise , Saccharum/microbiologia , Simbiose/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Regulação Bacteriana da Expressão Gênica , Genótipo , Gluconacetobacter/genética , Gluconacetobacter/fisiologia , Fixação de Nitrogênio/genética , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Proteoma/fisiologia , Saccharum/genética , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Transdução de Sinais
4.
BMC Genomics ; 11 Suppl 5: S7, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210973

RESUMO

BACKGROUND: G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. RESULTS: Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. CONCLUSIONS: The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.


Assuntos
Azotobacter vinelandii/enzimologia , Gluconacetobacter/enzimologia , Modelos Moleculares , Nitrogenase/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Genômica , Gluconacetobacter/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética , Ligação Proteica , Eletricidade Estática
5.
FEMS Microbiol Lett ; 298(2): 241-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19659744

RESUMO

The PhoB/PhoR-dependent response to inorganic phosphate (Pi)-starvation in Vibrio cholerae O1 includes the expression of vc0719 for the response regulator PhoB, vca0033 for an alkaline phosphatase and vca1008 for an outer membrane protein (OMP). Sequences with high identity to these genes have been found in the genome of clinical and environmental strains, suggesting that the Pi-starvation response in V. cholerae is well conserved. VCA1008, an uncharacterized OMP involved in V. cholerae pathogenicity, presents sequence similarity to porins of Gram-negative bacteria such as phosphoporin PhoE from Escherichia coli. A three-dimensional model shows that VCA1008 is a 16-stranded pore-forming beta-barrel protein that shares three of the four conserved lysine residues responsible for PhoE anionic specificity with PhoE. VCA1008 beta-barrel apparently forms trimers that collapse into monomers by heating. Properties such as heat modifiability and resistance to denaturation by sodium dodecyl sulfate at lower temperatures permitted us to suggest that VCA1008 is a classical porin, more precisely, a phosphoporin due to its Pi starvation-induced PhoB-dependent expression, demonstrated by electrophoretic mobility shift assay and promoter fusion-lacZ assays.


Assuntos
Porinas/genética , Porinas/metabolismo , Vibrio cholerae O1/genética , Vibrio cholerae O1/metabolismo , Sequência de Aminoácidos , Fusão Gênica Artificial , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Porinas/química , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
6.
Proteomics ; 8(8): 1631-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18340630

RESUMO

This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatography in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer. The 583 identified proteins were sorted into functional categories and used to describe potential metabolic pathways for nucleotides, amino acids, carbohydrates, lipids, cofactors and energy production, according to the Enzyme Commission of Enzyme Nomenclature (EC) and Kyoto Encyclopedia of genes and genomes (KEGG) databases. The identification of such proteins and their possible insertion in conserved biochemical routes will allow comparisons between G. diazotrophicus and other bacterial species. Furthermore, the 88 proteins classified as conserved unknown or unknown constitute a potential target for functional genomic studies, aiming at the understanding of protein function and regulation of gene expression. The knowledge of metabolic fundamentals and coordination of these actions are crucial for the rational, safe and sustainable interference on crops. The entire dataset, including peptide sequence information, is available as Supporting Information and is the major contribution of this work.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/metabolismo , Proteoma/análise , Saccharum/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Gluconacetobacter/crescimento & desenvolvimento , Saccharum/microbiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA