Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Anim Ecol ; 91(11): 2248-2260, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054553

RESUMO

Nestedness and modularity have been found in many species interaction networks. Despite being conceptually distinct, negatively correlated and having different causes, these patterns often co-occur. A realistic but seldom investigated alternative to these simple topologies is hierarchical compound networks, in which the entire network is modular, and modules are internally nested. In compound networks, nestedness is suppressed by modularity at higher network hierarchical levels, but prevails at lower levels, within modules. The aims of this study are (i) to evaluate the prevalence of simple and hierarchical compound topologies in binary and weighted networks describing different kinds of species interactions and (ii) to probe the relationships between modularity and nestedness at different network hierarchical levels. With a procedure that discriminates between simple and compound structures, we re-analysed the topology of 142 well-studied binary networks including seed dispersal, host-parasite, pollination and plant-herbivore interactions; 68 of these also had quantitative information. Additionally, we tested the relationship between robustness and topology of binary networks and compared the robustness of networks with compound topologies to different sequences of species removals. Compound topologies were detected in 34% of binary and 71% of weighted networks of all interaction kinds. These results establish the hierarchical compound topology as a widespread network architecture, often undetected without quantitative data. Furthermore, they disentangle an apparent paradox: despite conflicting with overall nestedness, modularity usually co-occurs with high values of low-level nestedness. Nestedness progressively decreased, while modularity increased, from seed dispersal to host-parasite, pollination and plant-herbivore networks. There were no consistent differences in the robustness of networks with nested and compound topologies. However, compound topologies were especially vulnerable to removal sequences that accelerate the exclusion of entire modules. Compound topologies improve the depiction of ecological networks and differentiate ecological and evolutionary processes that operate at different hierarchical levels, with the potential to advance our understanding of network dynamics, stability and response to species loss or change. Quantitative data often reveal specialization patterns that are indistinguishable in binary networks, strongly improving the detection of modular and compound topologies.


Assuntos
Parasitos , Dispersão de Sementes , Animais , Ecossistema , Polinização/fisiologia , Herbivoria , Evolução Biológica
2.
Biol Lett ; 18(8): 20220219, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000221

RESUMO

Recent reviews of data on worldwide insect decline include almost no information on Brazil. We gathered evidence from literature searches and a survey sent to researchers, to which 96 replied and 56 provided information and publications. We present 75 instances of trends recorded over an average span of 11 years for aquatic and 22 years for terrestrial insects. These include time-replicated samples and expert opinion based on long-term local collections. Most terrestrial data are for butterflies, bees and scarab beetles. Aquatic studies include several insect orders, usually sorted to genus or family. Terrestrial insects showed significantly more cases of declines than increases, both in abundance (17 : 3) and in diversity (11 : 1). In aquatic cases, no tendency was detected in abundance (2 : 2) or diversity (3 : 4), not counting cases with no trend. Differences in these results among habitats may be due to the shorter span and less change in environmental conditions in the aquatic surveys, which included sites already degraded before sampling. We offer guidelines for future long-term assessments, including resampling of legacy collection sites.


Assuntos
Biodiversidade , Borboletas , Animais , Abelhas , Brasil , Ecossistema , Insetos
3.
Entropy (Basel) ; 22(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33286300

RESUMO

Entropy-based indices are long-established measures of biological diversity, nowadays used to gauge partitioning of diversity at different spatial scales. Here, we tackle the measurement of diversity of interactions among two sets of organisms, such as plants and their pollinators. Actual interactions in ecological communities are depicted as bipartite networks or interaction matrices. Recent studies concentrate on distinctive structural patterns, such as nestedness or modularity, found in different modes of interaction. By contrast, we investigate mutual information as a general measure of structure in interactive networks. Mutual information (MI) measures the degree of reciprocal matching or specialization between interacting organisms. To ascertain its usefulness as a general measure, we explore (a) analytical solutions for different models; (b) the response of MI to network parameters, especially size and occupancy; (c) MI in nested, modular, and compound topologies. MI varies with fundamental matrix parameters: dimension and occupancy, for which it can be adjusted or normalized. Apparent differences among topologies are contingent on dimensions and occupancy, rather than on topological patterns themselves. As a general measure of interaction structure, MI is applicable to conceptually and empirically fruitful analyses, such as comparing similar ecological networks along geographical gradients or among interaction modalities in mutualistic or antagonistic networks.

4.
Oecologia ; 185(4): 551-559, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29052768

RESUMO

Resource specialization is a key concept in ecology, but it is unexpectedly difficult to parameterize. Differences in resource availability, sampling effort and abundances preclude comparisons of incompletely sampled biotic interaction webs. Here, we extend the distance-based specialization index (DSI) that measures trophic specialization by taking resource phylogenetic relatedness and availability into account into a rescaled version, DSI*. It is a versatile metric of specialization that expands considerably the scope and applicability, hence the usefulness, of DSI. The new metric also accounts for differences in abundance and sampling effort of consumers, which enables robust comparisons among distinct guilds of consumers. It also provides an abundance threshold for the reliability of the metric for rare species, a very desirable property given the difficulty of assessing any aspect of rare species accurately. We apply DSI* to an extensive dataset on interactions between insect herbivores from four folivorous guilds and their host plants in Papua New Guinean rainforests. We demonstrate that DSI*, contrary to the original DSI, is largely independent of sample size and weakly and non-linearly related with several host specificity measures that do not adjust for plant phylogeny. Thus, DSI* provides further insights into host specificity patterns; moreover, it is robust to the number and phylogenetic diversity of plant species selected to be sampled for herbivores. DSI* can be used for a broad range of comparisons of distinct feeding guilds, geographical locations and ecological conditions. This is a key advance in elucidating the interaction structure and evolution of highly diversified systems.


Assuntos
Herbivoria , Insetos/classificação , Filogenia , Plantas/classificação , Animais , Cadeia Alimentar , Insetos/genética , Estado Nutricional , Reprodutibilidade dos Testes
5.
Environ Entomol ; 45(1): 171-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637546

RESUMO

Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.


Assuntos
Asteraceae/fisiologia , Herbivoria , Insetos/fisiologia , Animais , Biodiversidade , Brasil , Cadeia Alimentar , Inflorescência/fisiologia , Especificidade da Espécie
6.
PLoS One ; 10(12): e0144110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633187

RESUMO

Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.


Assuntos
Distribuição Animal/fisiologia , Artrópodes/fisiologia , Biodiversidade , Ecossistema , Animais , Panamá , Filogenia , Floresta Úmida , Clima Tropical
7.
Ecol Lett ; 17(11): 1341-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25168335

RESUMO

Resource specialisation, although a fundamental component of ecological theory, is employed in disparate ways. Most definitions derive from simple counts of resource species. We build on recent advances in ecophylogenetics and null model analysis to propose a concept of specialisation that comprises affinities among resources as well as their co-occurrence with consumers. In the distance-based specialisation index (DSI), specialisation is measured as relatedness (phylogenetic or otherwise) of resources, scaled by the null expectation of random use of locally available resources. Thus, specialists use significantly clustered sets of resources, whereas generalists use over-dispersed resources. Intermediate species are classed as indiscriminate consumers. The effectiveness of this approach was assessed with differentially restricted null models, applied to a data set of 168 herbivorous insect species and their hosts. Incorporation of plant relatedness and relative abundance greatly improved specialisation measures compared to taxon counts or simpler null models, which overestimate the fraction of specialists, a problem compounded by insufficient sampling effort. This framework disambiguates the concept of specialisation with an explicit measure applicable to any mode of affinity among resource classes, and is also linked to ecological and evolutionary processes. This will enable a more rigorous deployment of ecological specialisation in empirical and theoretical studies.


Assuntos
Evolução Biológica , Ecologia/métodos , Ecossistema , Modelos Teóricos , Animais , Herbivoria , Insetos/classificação , Filogenia , Plantas/classificação
9.
Oecologia ; 165(4): 1051-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20872016

RESUMO

The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.


Assuntos
Ecossistema , Insetos/fisiologia , Poaceae/crescimento & desenvolvimento , Animais , Asteraceae/crescimento & desenvolvimento , Asteraceae/fisiologia , Biodiversidade , Dípteros/classificação , Dípteros/fisiologia , Comportamento Alimentar/fisiologia , Insetos/classificação , Lepidópteros/classificação , Lepidópteros/fisiologia , Poaceae/fisiologia , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA