Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vasc Surg ; 66(3): 883-890.e1, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017585

RESUMO

OBJECTIVE: One of the rate-limiting barriers within the field of vascular tissue engineering is the lengthy fabrication time associated with expanding appropriate cell types in culture. One particularly attractive cell type for this purpose is the adipose-derived mesenchymal stem cell (AD-MSC), which is abundant and easily harvested from liposuction procedures. Even this cell type has its drawbacks, however, including the required culture period for expansion, which could pose risks of cellular transformation or contamination. Eliminating culture entirely would be ideal to avoid these concerns. In this study, we used the raw population of cells obtained after digestion of human liposuction aspirates, known as the stromal vascular fraction (SVF), as an abundant, culture-free cell source for tissue-engineered vascular grafts (TEVGs). METHODS: SVF cells and donor-paired cultured AD-MSCs were first assessed for their abilities to differentiate into vascular smooth muscle cells (SMCs) after angiotensin II stimulation and to secrete factors (eg, conditioned media) that promote SMC migration. Next, both cell types were incorporated into TEVG scaffolds, implanted as an aortic graft in a Lewis rat model, and assessed for their patency and composition. RESULTS: In general, the human SVF cells were able to perform the same functions as AD-MSCs isolated from the same donor by culture expansion. Specifically, cells within the SVF performed two important functions; namely, they were able to differentiate into SMCs (SVF calponin expression: 16.4% ± 7.7% vs AD-MSC: 19.9%% ± 1.7%) and could secrete promigratory factors (SVF migration rate relative to control: 3.1 ± 0.3 vs AD-MSC: 2.5 ± 0.5). The SVF cells were also capable of being seeded within biodegradable, elastomeric, porous scaffolds that, when implanted in vivo for 8 weeks, generated patent TEVGs (SVF: 83% patency vs AD-MSC: 100% patency) populated with primary vascular components (eg, SMCs, endothelial cells, collagen, and elastin). CONCLUSIONS: Human adipose tissue can be used as a culture-free cell source to create TEVGs, laying the groundwork for the rapid production of cell-seeded grafts.


Assuntos
Tecido Adiposo/irrigação sanguínea , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/transplante , Células Estromais/transplante , Engenharia Tecidual/métodos , Adulto , Angiotensina II/farmacologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Implante de Prótese Vascular/métodos , Diferenciação Celular , Movimento Celular , Separação Celular , Células Cultivadas , Feminino , Humanos , Lipectomia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos Endogâmicos Lew , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fatores de Tempo , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA