Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446093

RESUMO

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).


Assuntos
Produtos Biológicos , Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Produtos Biológicos/farmacologia , Canabinoides/farmacologia , Canabinoides/química , Imidazóis , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Relação Estrutura-Atividade , Mamíferos
2.
J Nat Prod ; 74(10): 2313-7, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21999614

RESUMO

NMR-guided fractionation of two independent collections of the marine cyanobacteria Lyngbya majuscula obtained from Papua New Guinea and Oscillatoria sp. collected in Panama led to the isolation of the new lipids serinolamide A (3) and propenediester (4). Their structures were determined by NMR and MS data analysis. Serinolamide A (3) exhibited a moderate agonist effect and selectivity for the CB1 cannabinoid receptor (Ki=1.3 µM, >5-fold) and represents the newest addition to the known cannabinomimetic natural products of marine origin.


Assuntos
Cianobactérias/química , Lipídeos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Lipídeos/química , Lipídeos/farmacologia , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Panamá , Papua Nova Guiné , Receptor CB1 de Canabinoide/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA