Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Nutr ; 8: 708928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381807

RESUMO

The aim of this study is to investigate the bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread. Phenolics from coffee were predominantly found in free forms (68%, mainly chlorogenic acids), whereas those from bread were mostly bound to melanoidins (61%, mainly ferulic acid). Bioacessibility of coffee total free phenolics slightly decreased during simulated digestion (87, 86, and 82% after the oral, gastric, and intestinal steps, respectively), with caffeoylquinic acids being isomerized and chlorogenic acids being partially hydrolyzed to the corresponding hydroxycinnamic acids. Bioacessibility of bread total free phenolics decreased during simulated digestion (91, 85, and 67% after the oral, gastric, and intestinal steps, respectively), probably related to complexation with the proteins in simulated gastric and intestinal fluids. Upon gut fermentation, the bioaccessibility of total free phenolics from both coffee and bread decreased, mainly after the first 4 h (56 and 50%, respectively). Caffeic and ferulic acids were the predominant metabolites found during coffee and bread gut fermentation, respectively. Melanoidin-bound phenolics from coffee and bread were progressively released after the gastric and intestinal steps, probably due to hydrolysis caused by the acidic conditions of the stomach and the action of pancreatin from the intestinal fluid. The bioaccessibilities of all phenolics from coffee and bread melanoidins after the gastric and intestinal steps were, on average, 11 and 26%, respectively. During gut fermentation, phenolics bound to both coffee and bread melanoidins were further released by the gut microbiota, whereas those from coffee were also metabolized. This difference could be related to the action of proteases on melanoproteins during gastrointestinal digestion, probably anticipating phenolics release. Nevertheless, bioaccessibilities of melanoidin-bound phenolics reached maximum values after gut fermentation for 24 h (50% for coffee and 51% for bread). In conclusion, the bioaccessibilities of coffee and bread free phenolics during simulated digestion and gut fermentation were remarkably similar, and so were the bioaccessibilities of coffee and bread melanoidin-bound phenolics.

2.
Food Chem ; 333: 127473, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659670

RESUMO

This study aimed at investigating two strategies to enhance the bioaccessibility of phenolic compounds from whole-wheat breads: enzymatic bioprocessing and addition of green coffee infusion. Although both strategies had a significant effect on increasing the contents of total soluble phenolic compounds in breads, the addition of green coffee infusion was much more relevant (19.1-fold) than enzymatic bioprocessing (1.8-fold). The phenolic compounds present as soluble forms were completely released from all breads' matrix already at the oral phase of digestion. While gastric digestion did not promote the release of insoluble phenolic compounds, intestinal conditions led to a slight release. All bread samples showed maximum phenolic compounds bioaccessibility after 4 h of gut fermentation. Upon the end of in vitro digestion and gut fermentation, the difference between the strategies was that enzymatic bioprocessing accelerated ferulic acid release, while the addition of green coffee infusion increased 10.4-fold the overall phenolic compounds bioaccessibility.


Assuntos
Pão/análise , Fermentação , Microbioma Gastrointestinal , Fenóis/metabolismo , Disponibilidade Biológica , Café/química , Ácidos Cumáricos/metabolismo , Triticum/química
4.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31862721

RESUMO

The microbiota influences host health through several mechanisms, including protecting it from pathogen colonization. Staphylococcus epidermidis is one of the most frequently found species in the skin microbiota, and its presence can limit the development of pathogens such as Staphylococcus aureusS. aureus causes diverse types of infections ranging from skin abscesses to bloodstream infections. Given the increasing prevalence of S. aureus drug-resistant strains, it is imperative to search for new strategies for treatment and prevention. Thus, we investigated the activity of molecules produced by a commensal S. epidermidis isolate against S. aureus biofilms. We showed that molecules present in S. epidermidis cell-free conditioned media (CFCM) caused a significant reduction in biofilm formation in most S. aureus clinical isolates, including all 4 agr types and agr-defective strains, without any impact on growth. S. epidermidis molecules also disrupted established S. aureus biofilms and reduced the antibiotic concentration required to eliminate them. Preliminary characterization of the active compound showed that its activity is resistant to heat, protease inhibitors, trypsin, proteinase K, and sodium periodate treatments, suggesting that it is not proteinaceous. RNA sequencing revealed that S. epidermidis-secreted molecules modulate the expression of hundreds of S. aureus genes, some of which are associated with biofilm production. Biofilm formation is one of the main virulence factors of S. aureus and has been associated with chronic infections and antimicrobial resistance. Therefore, molecules that can counteract this virulence factor may be promising alternatives as novel therapeutic agents to control S. aureus infections.IMPORTANCES. aureus is a leading agent of infections worldwide, and its main virulence characteristic is the ability to produce biofilms on surfaces such as medical devices. Biofilms are known to confer increased resistance to antimicrobials and to the host immune responses, requiring aggressive antibiotic treatment and removal of the infected surface. Here, we investigated a new source of antibiofilm compounds, the skin microbiome. Specifically, we found that a commensal strain of S. epidermidis produces molecules with antibiofilm activity, leading to a significant decrease of S. aureus biofilm formation and to a reduction of previously established biofilms. The molecules potentiated the activity of antibiotics and affected the expression of hundreds of S. aureus genes, including those associated with biofilm formation. Our research highlights the search for compounds that can aid us in the fight against S. aureus infections.


Assuntos
Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/química , Fatores de Virulência/fisiologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/fisiologia
5.
Front Microbiol ; 10: 2003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555238

RESUMO

During the last decades it has become increasingly clear that the microbes that live on and in humans are critical for health. The communities they form, termed microbiomes, are involved in fundamental processes such as the maturation and constant regulation of the immune system. Additionally, they constitute a strong defense barrier to invading pathogens, and are also intricately linked to nutrition. The parameters that affect the establishment and maintenance of these microbial communities are diverse, and include the genetic background, mode of birth, nutrition, hygiene, and host lifestyle in general. Here, we describe the characterization of the gut microbiome of individuals living in the Amazon, and the comparison of these microbial communities to those found in individuals from an urban, industrialized setting. Our results showed striking differences in microbial communities from these two types of populations. Additionally, we used high-throughput metabolomics to study the chemical ecology of the gut environment and found significant metabolic changes between the two populations. Although we cannot point out a single cause for the microbial and metabolic changes observed between Amazonian and urban individuals, they are likely to include dietary differences as well as diverse patterns of environmental exposure. To our knowledge, this is the first description of gut microbial and metabolic profiles in Amazonian populations, and it provides a starting point for thorough characterizations of the impact of individual environmental conditions on the human microbiome and metabolome.

6.
Curr Microbiol ; 76(6): 713-722, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968206

RESUMO

Despite the broad assessment of sponge bacterial diversity through cultivation-independent and dependent strategies, the knowledge focusing on cultivable anaerobes from this holobiont is still incipient. Plakina is a genus with the highest number of described species from the smallest of poriferan classes, Homoscleromorpha. The Brazilian Atlantic coast has been presenting itself as a hotspot for the discovery of new plakinidae species, with initial surveys just now concerning to characterize their microbiome. The current study aimed to isolate and identify strict anaerobes from recently described species of Plakina collected at the coast of Cabo Frio, RJ. Samples of four sympatric morphotypes of Plakina cyanorosea and Plakina cabofriense were collected on the coast of Cabo Frio, RJ. Using five different culture media, a total of 93 bacterial isolates were recovered, among which 60 were strict anaerobes and, ultimately, 34 remaining viable. A total of 76.5% from these strains were mostly identified as Clostridium bifermentans by mass spectrometry and 82.4% identified by 16S rRNA sequencing, almost all of them affiliated to the genus Paraclostridium, and with one isolate identified as Clostridium butyricum by both techniques. None of the anaerobic bacteria exhibited antimicrobial activity by the adopted screening test. The present work highlights not only the need for cultivation and characterization of the anaerobic microbiota from marine sponges but also adds the existing scarce knowledge of culturable bacterial communities from Homoscleromorph sponges from Brazilian coast.


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Clostridiales/classificação , Clostridiales/isolamento & purificação , Poríferos/microbiologia , Aerobiose , Anaerobiose , Animais , Anti-Infecciosos/metabolismo , Organismos Aquáticos/microbiologia , Oceano Atlântico , Bactérias Anaeróbias/química , Bactérias Anaeróbias/genética , Técnicas Bacteriológicas , Brasil , Clostridiales/química , Clostridiales/genética , Clostridium bifermentans , Clostridium butyricum , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Espectrometria de Massas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Nat Prod Res ; 33(23): 3432-3435, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29781298

RESUMO

The inhibitory activity of a Bauhinia forficata tincture (TBF) was investigated against oral microorganism's strains and against a mature oral biofilm. The viability of planktonic cells was analyzed by Minimal Inhibitory and Microbicidal concentrations of TBF. Salivary samples from health volunteers were collected and mixed to form a saliva pool. An aliquot from this pool were seeded on membranes, which were incubated to form biofilm (48 h). The biofilm was treated according to the groups: G1-Chlorhexidine 0.12%; G2-TBF at the highest MMC; G3-Ethanol at the TBF highest MMC. G4 was the growth control. Streptococcus spp. (S) and total microorganisms (TM) from biofilm were counted. TBF was microbicidal against all oral pathogens. G2 was able to reduce the counts of S and TM from biofilm compared to G3 and G4, but less than G1 (p < 0.05). TBF is able to reduce the microbial levels from a mature oral biofilm.


Assuntos
Anti-Infecciosos/isolamento & purificação , Bauhinia/química , Biofilmes/efeitos dos fármacos , Saliva/microbiologia , Anti-Infecciosos/química , Clorexidina/farmacologia , Voluntários Saudáveis , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/química
8.
PLoS One ; 13(9): e0203748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212521

RESUMO

Violacein is a violet pigment produced by Chromobacterium violaceum that possesses several functions such as antibacterial, antiviral, antifungal, and antioxidant activities. The search for potential compounds and therapies that may interfere with and modulate the gut microbial consortia without causing severe damage and increased resistance is important for the treatment of inflammatory, allergic, and metabolic diseases. The aim of the present work was to evaluate the ability of violacein to change microbial patterns in the mammalian gut by favoring certain groups over the others in order to be used as a therapy for diseases associated with changes in the intestinal microflora. To do this, we used male Wistar rats, and administered violacein orally, in low (50 µg/ml) and high (500 µg/ml) doses for a month. Initially, the changes in the microbial diversity were observed by DGGE analyses that showed that the violacein significantly affects the gut microbiota of the rats. Pyrosequencing of 16S rDNA was then employed using a 454 GS Titanium platform, and the results demonstrated that higher taxonomic richness was observed with the low violacein treatment group, followed by the control group and high violacein treatment group. Modulation of the microbiota at the class level was observed in the low violacein dose, where Bacilli and Clostridia (Firmicutes) were found as dominant. For the high violacein dose, Bacilli followed by Clostridia and Actinobacteria were present as the major components. Further analyses are crucial for a better understanding of how violacein affects the gut microbiome and whether this change would be beneficial to the host, providing a framework for the development of alternative treatment strategies for intestinal diseases using this compound.


Assuntos
Antibacterianos/farmacologia , Chromobacterium/química , Microbioma Gastrointestinal/efeitos dos fármacos , Indóis/farmacologia , Administração Oral , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Chromobacterium/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Indóis/química , Indóis/isolamento & purificação , Intestinos/microbiologia , Masculino , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Wistar , Análise de Sequência de DNA
9.
Braz. j. microbiol ; 49(1): 200-206, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889189

RESUMO

ABSTRACT Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.


Assuntos
Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Infecções por Bacteroides/microbiologia , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/isolamento & purificação , Bacteroides fragilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Testes de Sensibilidade Microbiana , Proteínas Repressoras/metabolismo
10.
Braz. J. Microbiol. ; 49(1): 200-206, jan.-mar. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18597

RESUMO

Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.(AU)


Assuntos
Bacteroides fragilis , Anti-Infecciosos , Resistência a Múltiplos Medicamentos , Estresse Oxidativo , Bactérias Anaeróbias , Inativação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA