Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev Biol Trop ; 61(3): 1493-507, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24027938

RESUMO

Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra) in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species). We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content), and photosynthesis (e.g. quantum yield and electron transport rate) were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vxmax and Jmax) and Photosystem II efficiency (e.g. thermal energy dissipation) occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species) enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.


Assuntos
Ecossistema , Meliaceae/crescimento & desenvolvimento , Myristicaceae/crescimento & desenvolvimento , Fotossíntese/fisiologia , Plântula/crescimento & desenvolvimento , Solo/química , Agricultura , Costa Rica , Árvores
2.
Rev. biol. trop ; 61(3): 493-1507, sep. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-688491

RESUMO

Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra) in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species). We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content), and photosynthesis (e.g. quantum yield and electron transport rate) were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vcmax and Jmax) and Photosystem II efficiency (e.g. thermal energy dissipation) occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species) enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.


El enriquecimiento de bosques secundarios o plantaciones forestales en proceso de regeneración natural por medio de la siembra de plántulas es una práctica cada vez más utilizada para restaurar bosques tropicales en estado de sucesión tardía. Sembramos dos especies de árboles (Otoba novogranatensis y Ruagea glabra) en pastizales abandonados, bosques secundarios de ocho a diez años de edad y plantaciones forestales de tres años de edad (con dos especies fijadoras de Nitrógeno de un total de cuatro especies) en tres sitios agrícolas en el Sur de Costa Rica. Medimos condiciones micrometeorológicas, contenido de agua del suelo, potencial hídrico de las plantas, área foliar, C y N foliar, y fotosíntesis para entender de una mejor manera las respuestas funcionales de las plántulas ante condiciones de distintos estadíos sucesionales. Las condiciones micrometeorológicas, contenido hídrico del suelo y el potencial hídrico de las plantas fueron mayoritariamente similares entre hábitats. Algunos aspectos de las hojas (como Área Foliar Específica y contenido de N foliar) y fotosíntesis (ej.: rendimiento cuántico y tasa de transporte de electrones) presentaron valores mayores en las plantaciones, intermedios en los bosques secundarios y menores en los pastizales abandonados. Se obtuvo un aumento en las tasas fotosintéticas bioquímicas (como Vcmax, Jmax) y la eficiencia del Fotosistema II (ej.: disipación de energía térmica) en hojas provenientes de las plantaciones comparado a las de los pastizales, posiblemente relacionado a un mayor %N foliar. Los resultados sugieren que el N foliar puede ser más importante que el contenido de agua del suelo y que los factores micrometeorológicos para marcar diferencias en los procesos fotosintéticos entre hábitats. Las plántulas de estas dos especies en las plantaciones con árboles de tres años de edad (incluyendo dos fijadoras de N) incrementaron ciertos aspectos de su fotosíntesis y crecimiento comparado a las plántulas en los pastizales abandonados de especies exóticas, por lo tanto, esta práctica puede ayudar a incrementar la recuperación de los bosques en áreas agrícolas abandonadas.


Assuntos
Ecossistema , Meliaceae/crescimento & desenvolvimento , Myristicaceae/crescimento & desenvolvimento , Fotossíntese/fisiologia , Plântula/crescimento & desenvolvimento , Solo/química , Agricultura , Costa Rica , Árvores
3.
Oecologia ; 127(1): 40-50, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28547168

RESUMO

Only recently have studies addressed the effect of early-colonizing vegetation on tree seedling survival and growth during secondary succession in tropical old fields, and few studies have elucidated the physiological responses of tree seedlings to different vegetational communities. We compared growth and various photosynthetic parameters for seedlings of four rain-forest tree species, Cedrela tonduzii, Inga punctata, Ocotea whitei, and Tapirira mexicana, growing in areas of pasture grass and shrubs in early-successional abandoned pasture in Costa Rica; in addition, we made measurements for two species in forest gaps. We tested the general hypothesis that early-colonizing shrubs facilitate growth of forest tree seedlings. Specifically, we measured microclimate, growth, CO2 assimilation, stomatal conductance, photosystem II quantum yield (ΦPSII), and xanthophyll pigment pools for all seedlings. Photosynthetic flux density (PFD) was higher under grass than shrubs or forest gaps, but was highly variable in each growth environment. For three of the four species, height growth was greatest in the grass compared to the shrubs and forest gaps; growth was similar below grass and shrubs for O. whitei. Photosynthetic capacity, apparent quantum yield, and stomatal conductance did not vary across habitats, but light compensation point and PFD at light saturation tended to be higher in the grass compared to forest and shrub growth environments. Water use efficiency differed across growth environments for three of the species. For plants in ambient PFD and dark-adapted plants, the efficiency of excitation energy transfer through PSII was lowest for plants in the grass compared to shrubs and forest gaps and also differed across species. Measurement of steady-state responses of ΦPSII to increasing PFD indicated a significant effect of growth environment at low PFD for all species and significant effects at high PFD only for I. punctata. All species exhibited a high degree of midday xanthophyll de-epoxidation in the different growth environments. Xanthophyll pigment pool size on an area basis was highest in the grass compared to shrubs and forest gaps for all four species. The results suggest that shrubs do not provide a facilitative effect for growth or photosynthesis for ~1.5-year-old seedlings of these four species. We conclude that site differences in success of tree seedlings during succession are a result of complex interactions of facilitation and competition and are not simply based on physiological responses to PFD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA