Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Epilepsy Behav ; 154: 109706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518671

RESUMO

Non-human primates (NHPs) have played a crucial role in our understanding of epilepsy, given their striking similarities with humans. Through their use, we have gained a deeper understanding of the neurophysiology and pathophysiology of epileptic seizures, and they have proven invaluable allies in developing anti-seizure therapies. This review explores the history of NHPs as natural models of epilepsy, discusses the findings obtained after exposure to various chemoconvulsant drugs and focal electrical stimulation protocols that helped uncover important mechanisms related to epilepsy, examines diverse treatments to prevent and manage epilepsy, and addresses essential ethical issues in research. In this review, we aim to emphasize the important role of NHPs in epilepsy research and summarize the benefits and challenges associated with their use as models.


Assuntos
Epilepsia , Primatas , Animais , Humanos , Modelos Animais de Doenças , Epilepsia/fisiopatologia
2.
Neurotox Res ; 42(1): 14, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349488

RESUMO

Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and ß-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.


Assuntos
Canabidiol , Síndromes Neurotóxicas , Humanos , Canabidiol/toxicidade , Neurônios , Astrócitos , Carbidopa
3.
iScience ; 26(4): 106545, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37128547

RESUMO

Alzheimer's disease (AD) is characterized by neurodegeneration, memory loss, and social withdrawal. Brain inflammation has emerged as a key pathogenic mechanism in AD. We hypothesized that oxytocin, a pro-social hypothalamic neuropeptide with anti-inflammatory properties, could have therapeutic actions in AD. Here, we investigated oxytocin expression in experimental models of AD, and evaluated the therapeutic potential of treatment with oxytocin. Amyloid-ß peptide oligomers (AßOs) reduced oxytocin expression in vitro and in vivo, and treatment with oxytocin prevented microglial activation induced by AßOs in purified microglial cultures. Treatment of aged APP/PS1 mice, a mouse model of AD, with intranasal oxytocin attenuated microglial activation and favored deposition of Aß in dense core plaques, a potentially neuroprotective mechanism. Remarkably, treatment with oxytocin alleviated social and non-social memory impairments in aged APP/PS1 mice. Our findings point to oxytocin as a potential therapeutic target to reduce brain inflammation and correct memory deficits in AD.

4.
Biomedicines ; 11(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830920

RESUMO

The present study aimed to characterize the phenomenon of behavioral sensitization to cocaine and to identify neuroanatomical structures involved in the induction and expression phases of this phenomenon. For this, in experiment 1 (induction phase), mice were treated with saline or cocaine every second day for 15 days (conditioning period), in the open-field or in their home-cages. In experiment 2 (expression phase), the same protocol was followed, except that after the conditioning period the animals were not manipulated for 10 days, and after this interval, animals were challenged with cocaine. Neuroanatomical structures involved in the induction and expression phases were identified by stereological quantification of c-Fos staining in the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens core (NAc core and shell (NAc shell), basolateral amygdala (BLA), and ventral tegmental area (VTA). Neuroanatomical analysis indicated that in the induction phase, cocaine-conditioned animals had higher expression of c-Fos in the dmPFC, NAc core, BLA, and VTA, whereas in the expression phase, almost all areas had higher expression except for the VTA. Therefore, environmental context plays a major role in the induction and expression of behavioral sensitization, although not all structures that compose the mesolimbic system contribute to this phenomenon.

5.
Epilepsy Behav ; 129: 108615, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217387

RESUMO

Approximately 70% of women with epilepsy experience additional challenges in seizure exacerbation due to hormonal changes, particularly during fluctuations of estrogen-progesterone levels in the menstrual cycle, which is known as catamenial epilepsy. In animal models of epilepsy, a sustained increase in seizure frequency has been observed in female rats during the proestrus-estrus transition when estrogen levels are high and progesterone levels are low resembling catamenial epilepsy. Cannabidiol (CBD) has been proposed to have anticonvulsant and anti-inflammatory effects, able to decrease seizure duration and increase seizure threshold in rats with epilepsy. However, most studies have used males to investigate the pharmacological effects of CBD on seizures, and the neuroprotective effects of CBD against seizures exacerbated by hormonal fluctuations in females are still little explored. Given this scenario, the aim of the present study was to investigate whether CBD would protect against acute seizures induced by pentylenetetrazole (PTZ) in female rats during a pro-convulsant hormonal phase. Therefore, CBD (50 mg/kg) or saline was administered during the proestrus-estrus transition phase, 1 h prior to induction of seizures with PTZ (60 mg/kg), and the following parameters were recorded: duration, latency to first seizure, as well as percentage of convulsing animals (incidence), mortality, and severity of seizures. Brains were processed for immunohistochemistry for microglial cells (Iba-1), and blood was collected for the analysis of cytokines (IL-1ß, IL-6, IL-10, and TNF-α). Cannabidiol pre-treated rats showed a significant reduction in duration and severity of seizures, and IL-1ß levels, although the latency, incidence of seizures, and mortality rate remained unchanged as well the quantification of microglia in the selected areas. Therefore, acute administration of CBD in a single dose prior to seizure induction showed a partial neuroprotective effect against seizure severity and inflammation, suggesting that female rats in the proconvulsant phase of proestrus-estrus have a low seizure threshold and are more resistant to the anticonvulsant effects of CBD. It appears that other doses or administration windows of CBD may be required to achieve a full protective effect against seizures, suggesting that CBD could be used as an adjunctive therapy during fluctuations of estrogen-progesterone levels. In this sense, considering the hormonal fluctuation as a seizure-potentiating factor, our study contributes to understand the anticonvulsant activity of CBD in females in a pro-convulsant hormonal phase, similar to catamenial seizures in humans.


Assuntos
Canabidiol , Pentilenotetrazol , Animais , Anticonvulsivantes/efeitos adversos , Canabidiol/efeitos adversos , Modelos Animais de Doenças , Estro , Feminino , Humanos , Masculino , Pentilenotetrazol/farmacologia , Proestro , Ratos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
6.
Front Neurosci ; 16: 1100256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36909741

RESUMO

Interest in the use of anticholinergics to prevent the development of epilepsy after traumatic brain injury (TBI) has grown since recent basic studies have shown their effectiveness in modifying the epileptogenic process. These studies demonstrated that treatment with anticholinergics, in the acute phase after brain injury, decreases seizure frequency, and severity, and the number of spontaneous recurrent seizures (SRS). Therefore, anticholinergics may reduce the risk of developing posttraumatic epilepsy (PTE). In this brief review, we summarize the role of the cholinergic system in epilepsy and the key findings from using anticholinergic drugs to prevent PTE in animal models and new clinical trial protocols. Furthermore, we discuss why treatment with anticholinergics is more likely to prevent PTE than treatment for other epilepsies.

7.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911072

RESUMO

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Interleucina-6 , Camundongos , Placa Amiloide
8.
PLoS One ; 14(6): e0217287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166980

RESUMO

IMPACT, a highly conserved protein, is an inhibitor of the eIF2α kinase GCN2. In mammals, it is preferentially expressed in neurons. Knock-down of IMPACT expression in neuronal cells increases basal GCN2 activation and eIF2α phosphorylation and decreases translation initiation. In the mouse brain, IMPACT is particularly abundant in the hypothalamus. Here we describe that the lack of IMPACT in mice affects hypothalamic functions. Impact-/- mice (Imp-KO) are viable and have no apparent major phenotypic defect. The hypothalamus in these animals shows increased levels of eIF2α phosphorylation, as expected from the described role of IMPACT in inhibiting GCN2 and from its abundance in this brain region. When fed a normal chow, animals lacking IMPACT weight slightly less than wild-type mice. When fed a high-fat diet, Imp-KO animals gain substantially less weight due to lower food intake when compared to wild-type mice. STAT3 signaling was depressed in Imp-KO animals even though leptin levels were identical to the wild-type mice. This finding supports the observation that Imp-KO mice have defective thermoregulation upon fasting. This phenotype was partially dependent on GCN2, whereas the lean phenotype was independent of GCN2. Taken together, our results indicate that IMPACT contributes to GCN2-dependent and -independent mechanisms involved in the regulation of autonomic functions in response to energy availability.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Gorduras na Dieta/farmacologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Proteínas Serina-Treonina Quinases/genética
9.
Front Pharmacol ; 10: 211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914950

RESUMO

Studies on the abuse potential of modafinil, a psychostimulant-like drug used to treat narcolepsy, are still controversial. While some studies claim no potential for abuse, increasing evidence suggests that modafinil induces abuse-related effects, including rapid-onset behavioral sensitization (i.e., a type of sensitization that develops within hours from the drug priming administration). The rapid-onset sensitization paradigm is a valuable tool to study the neuroplastic changes that occur quickly after drug administration, and shares neuroadaptations with drug abuse in humans. However, the mechanisms involved in the rapid-onset behavioral sensitization induced by modafinil are uncertain. Our aim was to investigate the possible involvement of dopamine D1 and D2 receptors on acute modafinil-induced hyperlocomotion and on the induction and expression of rapid-onset behavioral sensitization induced by modafinil in male Swiss mice. Treatment with the D1 receptor antagonist SCH 23390 or the D2 receptor antagonist sulpiride attenuated the acute modafinil-induced hyperlocomotion in a dose-dependent manner. Pretreatment with either antagonist before the priming injection of modafinil prevented the development of sensitization in response to a modafinil challenge 4 h later. However, only SCH 23390 decreased the expression of modafinil-induced rapid-onset behavioral sensitization. Taken together, the present findings provide evidence of the participation of D1 and D2 receptors on the development of rapid-onset behavioral sensitization to modafinil, and point to a prominent role of D1 receptors on the expression of this phenomenon.

10.
Front Behav Neurosci ; 12: 159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131681

RESUMO

Maternal deprivation for 24 h produces an immediate increase in basal and stress-induced corticosterone (CORT) secretion. Given the impact of elevated CORT levels on brain development, the goal of the present study was to characterize the effects of maternal deprivation at postnatal days 3 (DEP3) or 11 (DEP11) on emotional behavior and neuropeptide Y immunoreactivity (NPY-ir) in the basolateral amygdala (BLA) and dorsal hippocampus (dHPC) of male and female rats. Litters were distributed in control non-deprived (CTL), DEP3, or DEP11 groups. In Experiment 1, within each litter, one male and one female were submitted to one of the following tests: novelty suppressed feeding (NSF), sucrose negative contrast test (SNCT), and forced swimming test (FST), between postnatal days 52 and 60. In Experiment 2, two males and two females per litter were exposed to the elevated plus maze and 1 h later, perfused for investigation of NPY-ir, on PND 52. The results showed that DEP3 rats displayed greater anxiety-like behavior in the NSF and EPM, compared to CTL and DEP11 counterparts. In the SNCT, DEP3 and DEP11 males showed less suppression of the lower sucrose concentration intake, whereas all females suppressed less than males. Both manipulated groups displayed more immobility in the FST, although this effect was greater in DEP3 than in DEP11 rats. NPY-ir was reduced in DEP3 and DEP11 males and females in the BLA, whereas in the dHPC, DEP3 males showed less NPY-ir than DEP11, which, in turn, presented less NPY-ir than CTL rats. Females showed less NPY-ir than males in both structures. Because the deprivation effects were more intense in DEP3 than in DEP11, in Experiment 3, the frequency of nursing posture, licking-grooming, and interaction with pups was assessed upon litter reunion with mothers. Mothers of DEP11 litters engaged more in anogenital licking than mothers of DEP3 litters. The present results indicate that maternal deprivation changed affective behavior with greater impact in the earlier age and reduced the expression of NPY in emotion-related brain areas. The age-dependent differential effects of deprivation on maternal behavior could, at least in part, explain the outcomes in young adult rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA