Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxics ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999548

RESUMO

The increasing number of studies reporting the risks of the exposure to pesticides aligned with the intensified use of such hazardous chemicals has emerged as a pressing contemporary issue, notably due to the potential effects to both the environment and human health. Pesticides, while broadly applied in modern agriculture for pest control and crop protection, have raised concerns due to their unintended effects on non-target organisms. The immune system exerts a key role in the protection against the exposome, which could result in cellular imbalances and tissue damage through the inflammatory response. Pesticides, which encompass a diverse array of chemicals, have been linked to inflammation in experimental models. Therefore, the aim of this review is to discuss the increasing concern over the risks of pesticide exposure focusing on the effects of various chemical classes on inflammation by covering, as broadly as possible, different experimental approaches as well as the multiple or co-exposure of pesticides. Overall, pesticides potentially induce inflammation in different experimental models, manifested through skin irritation, respiratory impairment, or systemic effects. The connection between pesticides and inflammation highlights the importance of proper handling and regulation of these substances and underscores the need for research into safer and sustainable practices to reduce our reliance on synthetic pesticides and fertilizers.

2.
Front Pharmacol ; 14: 1287580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026962

RESUMO

Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.

3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685886

RESUMO

Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Degeneração Retiniana/terapia , Degeneração Macular/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Biomarcadores , Cegueira , Retina
4.
Rev Soc Bras Med Trop ; 56: e0144-2023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531519

RESUMO

Venomous fish are commonly found in Brazilian waters. The most important marine venomous fish species are stingrays (Dasyatidae, Gimnuridae, Myliobatidae, and Rhinopteridae families), catfish (Ariidae family), scorpionfish and lionfish (both Scorpaenidae family), and toadfish (Batrachoididae family). Meanwhile, Potamotrygonidae stingrays and Pimelodidae catfish are the most important venomous freshwater fish. The mechanisms of envenomation vary and involve various venomous apparatuses and glands. Despite not being highly developed, these venomous apparatuses in fish appear rudimentary, using structures such as fins and rays to inoculate toxins and rarely presenting with specialized structures. Toxins are produced by glandular tissue made up of proteinaceous cells, lacking true glands, and are positioned along the inoculation structures. However, systemic manifestations are rare. No antivenom serum has been developed for any species of American venomous fish. Brazilian venomous fish and their venoms have only recently attracted attention, leading to new studies not only addressing clinical issues in humans, but also exploring the discovery of new active substances with immense pharmacological potential.


Assuntos
Mordeduras e Picadas , Peixes-Gato , Venenos de Peixe , Humanos , Animais , Venenos de Peixe/toxicidade , Brasil , Antivenenos
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176045

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Assuntos
Batracoidiformes , Peixes-Gato , Venenos de Peixe , Perciformes , Camundongos , Animais , Venenos de Peixe/toxicidade , Soros Imunes
6.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176162

RESUMO

Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1ß in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-ß neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.


Assuntos
Venenos de Peixe , Peçonhas , Camundongos , Animais , Venenos de Peixe/farmacologia , Inflamassomos , Inflamação/induzido quimicamente , Neutrófilos , Caspase 1
7.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982479

RESUMO

Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.


Assuntos
Retinopatia Diabética , Peixe-Zebra , Animais , Humanos , Recém-Nascido , Larva/metabolismo , Retina/metabolismo , Visão Ocular , Retinopatia Diabética/metabolismo , Mamíferos
8.
Cells ; 12(6)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980265

RESUMO

Asthma is the most common chronic lung disease, with increasing morbidity and mortality worldwide. Accumulation of peribronchial leukocytes is the hallmark of asthma, in particular, eosinophils, which have been reported as the primary cell associated with the induction of airway hyperresponsiveness. Continued exacerbation and accumulation of other leukocytes, such as neutrophils, Th1, and Th17 cells correlate with many of the long-term effects of asthma, such as airway remodeling. We have patented the TnP family of synthetic cyclic peptides, which is in the preclinical phase of developmental studies for chronic inflammatory diseases. The aim of this work was to investigate whether TnP could show anti-inflammatory activity in a murine model of asthma that includes a mixed phenotype of eosinophilic and neutrophilic inflammation. For this, Balb/c mice, sensitized with OVA and exposed to 1% challenge with OVA aerosol, were submitted to prophylactic treatment, receiving TnP at 0.3 mg/kg orally, 1 h before each challenge. We found that sensitized mice challenged with OVA and treated with TnP showed no airway hyperreactivity or lung remodeling. TnP acts systemically in secondary lymphoid organs and locally in the lung, inhibiting the production of Th2/Th17 cytokines. Furthermore, TnP prevented the infiltration of eosinophils and neutrophils in the BAL and lung tissue, inhibited the production of IgE/IgG1, prevented hyperplasia of mucus-producing cells, and decreased the thickening and deposition of sub-epithelial collagen. Our results showed TnP as a candidate molecule for the treatment of airway remodeling associated with inflammatory diseases, such as asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Asma/tratamento farmacológico , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
9.
Rev. Soc. Bras. Med. Trop ; 56: e0144, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449326

RESUMO

ABSTRACT Venomous fish are commonly found in Brazilian waters. The most important marine venomous fish species are stingrays (Dasyatidae, Gimnuridae, Myliobatidae, and Rhinopteridae families), catfish (Ariidae family), scorpionfish and lionfish (both Scorpaenidae family), and toadfish (Batrachoididae family). Meanwhile, Potamotrygonidae stingrays and Pimelodidae catfish are the most important venomous freshwater fish. The mechanisms of envenomation vary and involve various venomous apparatuses and glands. Despite not being highly developed, these venomous apparatuses in fish appear rudimentary, using structures such as fins and rays to inoculate toxins and rarely presenting with specialized structures. Toxins are produced by glandular tissue made up of proteinaceous cells, lacking true glands, and are positioned along the inoculation structures. However, systemic manifestations are rare. No antivenom serum has been developed for any species of American venomous fish. Brazilian venomous fish and their venoms have only recently attracted attention, leading to new studies not only addressing clinical issues in humans, but also exploring the discovery of new active substances with immense pharmacological potential.

10.
Toxics, v. 11, n. 11, 896, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5196

RESUMO

The increasing number of studies reporting the risks of the exposure to pesticides aligned with the intensified use of such hazardous chemicals has emerged as a pressing contemporary issue, notably due to the potential effects to both the environment and human health. Pesticides, while broadly applied in modern agriculture for pest control and crop protection, have raised concerns due to their unintended effects on non-target organisms. The immune system exerts a key role in the protection against the exposome, which could result in cellular imbalances and tissue damage through the inflammatory response. Pesticides, which encompass a diverse array of chemicals, have been linked to inflammation in experimental models. Therefore, the aim of this review is to discuss the increasing concern over the risks of pesticide exposure focusing on the effects of various chemical classes on inflammation by covering, as broadly as possible, different experimental approaches as well as the multiple or co-exposure of pesticides. Overall, pesticides potentially induce inflammation in different experimental models, manifested through skin irritation, respiratory impairment, or systemic effects. The connection between pesticides and inflammation highlights the importance of proper handling and regulation of these substances and underscores the need for research into safer and sustainable practices to reduce our reliance on synthetic pesticides and fertilizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA