Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 1043501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504625

RESUMO

The ability to learn motor skills implicates an improvement in accuracy, speed and consistency of movements. Motor control is related to movement execution and involves corticospinal neurons (CSp), which are broadly distributed in layer 5B of the motor and somatosensory cortices. CSp neurons innervate the spinal cord and are functionally diverse. However, whether CSp activity differs between different cortical areas throughout motor learning has been poorly explored. Given the importance and interaction between primary motor (M1) and somatosensory (S1) cortices related to movement, we examined the functional roles of CSp neurons in both areas. We induced the expression of GCaMP7s calcium indicator to perform photometric calcium recordings from layer 5B CSp neurons simultaneously in M1 and S1 cortices and track their activity while adult mice learned and performed a cued lever-press task. We found that during early learning sessions, the population calcium activity of CSp neurons in both cortices during movement did not change significantly. In late learning sessions the peak amplitude and duration of calcium activity CSp neurons increased in both, M1 and S1 cortices. However, S1 and M1 CSp neurons display a different temporal dynamic during movements that occurred when animals learned the task; both M1 and S1 CSp neurons activate before movement initiation, however, M1 CSp neurons continue active during movement performance, reinforcing the idea of the diversity of the CSp system and suggesting that CSp neuron activity in M1 and S1 cortices throughout motor learning have different functional roles for sensorimotor integration.

2.
Front Cell Neurosci ; 16: 1073731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605617

RESUMO

Introduction: Pyramidal tract neurons (PTNs) are fundamental elements for motor control. However, it is largely unknown if PTNs are segregated into different subtypes with distinct characteristics. Methods: Using anatomical and electrophysiological tools, we analyzed in mice motor cortex PTNs projecting to red and pontine midbrain nuclei, which are important hubs connecting cerebral cortex and cerebellum playing a critical role in the regulation of movement. Results: We reveal that the vast majority of M1 neurons projecting to the red and pontine nuclei constitutes different populations. Corticopontine neurons have higher conduction velocities and morphologically, a most homogeneous dendritic and spine distributions along cortical layers. Discussion: The results indicate that cortical neurons projecting to the red and pontine nuclei constitute distinct anatomical and functional pathways which may contribute differently to sensorimotor integration.

3.
Front Neurosci ; 15: 686481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177458

RESUMO

The knowledge about how different subsystems participate and interplay in sensorimotor control is fundamental to understand motor deficits associated with CNS injury and movement recovery. The role of corticospinal (CS) and rubrospinal (RS) projections in motor control has been extensively studied and compared, and it is clear that both systems are important for skilled movement. However, during phylogeny, the emerging cerebral cortex took a higher hierarchical role controlling rubro-cerebellar circuits. Here, we present anatomical, neurophysiological, and behavioral evidence suggesting that both systems modulate complex segmental neuronal networks in a parallel way, which is important for sensorimotor integration at spinal cord level. We also highlight that, although specializations exist, both systems could be complementary and potentially subserve motor recovery associated with CNS damage.

4.
BMC Neurosci ; 20(1): 50, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547806

RESUMO

BACKGROUND: Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS: Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS: The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.


Assuntos
Conectoma , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Cálcio/metabolismo , Imunofluorescência/métodos , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/fisiologia , Tratos Piramidais/metabolismo , Medula Espinal/metabolismo
5.
Front Cell Neurosci ; 12: 132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867365

RESUMO

Facial vibrissae, commonly known as whiskers, are the main sensitive tactile system in rodents. Whisker stimulation triggers neuronal activity that promotes neural plasticity in the barrel cortex (BC) and helps create spatial maps in the adult hippocampus. Moreover, activity-dependent inputs and calcium homeostasis modulate adult neurogenesis. Therefore, the neuronal activity of the BC possibly regulates hippocampal functions and neurogenesis. To assess whether tactile information from facial whiskers may modulate hippocampal functions and neurogenesis, we permanently eliminated whiskers in CD1 male mice and analyzed the effects in cellular composition, molecular expression and memory processing in the adult hippocampus. Our data indicated that the permanent deprivation of whiskers reduced in 4-fold the density of c-Fos+ cells (a calcium-dependent immediate early gene) in cornu ammonis subfields (CA1, CA2 and CA3) and 4.5-fold the dentate gyrus (DG). A significant reduction in the expression of calcium-binding proteincalbindin-D28k was also observed in granule cells of the DG. Notably, these changes coincided with an increase in apoptosis and a decrease in the proliferation of neural precursor cells in the DG, which ultimately reduced the number of Bromodeoxyuridine (BrdU)+NeuN+ mature neurons generated after whisker elimination. These abnormalities in the hippocampus were associated with a significant impairment of spatial memory and navigation skills. This is the first evidence indicating that tactile inputs from vibrissal follicles strongly modify the expression of c-Fos and calbindin in the DG, disrupt different aspects of hippocampal neurogenesis, and support the notion that spatial memory and navigation skills strongly require tactile information in the hippocampus.

6.
Neuroimmunol Neuroinflamm ; 2(2): 115-117, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938129

RESUMO

The current knowledge in neuroscience indicates that neural tissue has two major cell populations: neurons and glia (term derived from the Greek word for glue). Neuronal population is characterized by the capacity to produce action potentials, whereas glial cells are typically identified as the subordinate cell population of neurons. To date, this point of view has changed dramatically and growing evidence indicates that glial cells play a crucial role in normal mental functions and the pathogenesis of neurological diseases. Classically, glial cells include four major populations clearly discernible in the adult brain: astrocytes, oligodendrocytes, microglia cells and NG2 glia. Astrocytes, also referred as to astroglia, are by far the most abundant cell lineage in the adult brain. These cells are in close contact with several tissue components of the brain parenchyma including neurons, vasculature, extracellular matrix and other glial populations. Hence, the number and strategic position of astrocytes provide them with exceptional capacity for modulating multiple functions in the neural tissue.

7.
Gac Med Mex ; 151(1): 99-104, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-25739489

RESUMO

Adult neurogenesis in the dentate gyrus (DG) in the hippocampus is a process that involves proliferation, differentiation, maturation, migration, and integration of young neurons in the granular layer of DG. These newborn neurons mature in three to four weeks and incorporate into neural circuits in the hippocampus. There, these new neurons play a role in cognitive functions, such as acquisition and retention of memory, which are consolidated during sleep period. In this review, we describe recent findings that associate sleep deprivation with changes in hippocampal neurogenesis and cognitive processes. In addition, we describe possible mechanisms implicated in this deterioration such as circadian rhythm, melatonin receptors, and growth factors.


Assuntos
Hipocampo/metabolismo , Neurogênese/fisiologia , Privação do Sono/fisiopatologia , Adulto , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Ritmo Circadiano/fisiologia , Cognição/fisiologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Hipocampo/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia
8.
Neurosci Res ; 70(3): 243-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21514330

RESUMO

The subgranular zone (SGZ) in the dentate gyrus contains radial astrocytes, known as Type-1 or Type-B cells, which generate neuroblasts (Type-2 cells or Type-D cells) that give rise to granular neurons. Stress increases glucocorticoid levels that target SGZ and modify the proliferation and apoptosis of hippocampal cells. Yet, it is not well-known whether stress differentially affects SGZ progenitors. We investigated the effects of noise-induced stress on the rate of proliferation and apoptosis of the Type-1 cells, Type-2 cells and newly generated granular neurons in the SGZ. We exposed Balb/C mice to noise using a standardized rodents' audiogram-fitted adaptation of a human noisy environment. We measured corticosterone serum levels at different time points. Animals received BrdU injections for 3 days and sequential sacrifices were done to carry out double-immunohistochemical analyses. We found that a 24-h noise exposure did not produce adaptative response in the curve of corticosterone as compared to a 12-h noise exposure. The percentage of BrdU+/GFAP+ cells was significantly reduced in the stress group as compared to controls. A high proportion of CASP-3+/GFAP+ radial astrocytes were found in the stress group. The percentage of BrdU+/doublecortin+ cells was higher in controls than in the stress group. Interestingly, the apoptosis rate of doublecortin-expressing cells in the stress group was slightly lesser than in controls. Remarkably, we did not find significant differences in the number of BrdU+/NeuN+ and CASP-3+/NeuN+ neurons. These data indicate that stress differentially affects the rate of proliferation and apoptosis in SGZ progenitors and suggest a possible compensatory mechanism to keep the net number of granular neurons.


Assuntos
Astrócitos/fisiologia , Giro Denteado/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Ruído/efeitos adversos , Estresse Fisiológico/fisiologia , Animais , Astrócitos/citologia , Giro Denteado/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neurais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA