Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 364(3): 527-541, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26796205

RESUMO

The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.


Assuntos
Embrião não Mamífero/enzimologia , Água Doce , Palaemonidae/embriologia , Palaemonidae/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Brânquias/ultraestrutura , Larva/enzimologia , Osmorregulação , Palaemonidae/anatomia & histologia , Palaemonidae/ultraestrutura , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , ATPase Trocadora de Sódio-Potássio/genética
2.
Cell Tissue Res ; 353(1): 87-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616029

RESUMO

The ontogeny of osmoregulatory organs was studied in two geographically isolated populations of the palaemonid shrimp Macrobrachium amazonicum, one originating from the Amazon estuary (A) and the other from inland waters of the Pantanal (P) in northeastern and southwestern Brazil, respectively. A previous investigation had shown that the estuarine population is able to hypo-osmoregulate in seawater, whereas the hololimnetic inland population has lost this physiological function. In the present study, the structural development of the branchial chamber and excretory glands and the presence of Na(+)/K(+)-ATPase (NKA) were compared between populations and between larval and juvenile stages after exposure to two salinities representing hypo- and hypertonic environments. In the newly hatched zoea I stage of both populations, gills were absent and NKA was localized along the inner epithelium of the branchiostegite. In intermediate (zoea V) and late larval stages (decapodids), significant differences between the two populations were observed in gill development and NKA expression. In juveniles, NKA was detected in the gills and branchiostegite, with no differences between populations. At all developmental stages and in both populations, NKA was present in the antennal glands upon hatching. The strong hypo-osmoregulatory capacity of the early developmental stages in population A could be linked to ion transport along the inner side of the branchiostegite; this seemed to be absent or weak in population P. The presence of fully functional gills expressing NKA appears to be essential for efficient hyper-osmoregulation in late developmental stages during successful freshwater adaptation and colonization.


Assuntos
Adaptação Fisiológica/fisiologia , Água Doce , Osmorregulação/fisiologia , Palaemonidae/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Brasil , Brânquias/embriologia , Transporte de Íons , Salinidade , Água do Mar , ATPase Trocadora de Sódio-Potássio/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA