Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(4): 122, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977931

RESUMO

The ORF 70 gene of equid alphaherpesvirus type 3 (EHV-3) encodes glycoprotein G (gG), which is conserved in the majority of alphaherpesviruses. This glycoprotein is located in the viral envelope and has the characteristic of being secreted into the culture medium after proteolytic processing. It modulates the antiviral immune response of the host by interacting with chemokines. The aim of this study was to identify and characterize EHV-3 gG. By constructing viruses with HA-tagged gG, it was possible to detect gG in lysates of infected cells, their supernatants, and purified virions. A 100-, 60-, and 17-kDa form of the protein were detected in viral particles, while a 60-kDa form was identified in supernatants of infected cells. The role of EHV-3 gG in the viral infection cycle was assessed by the construction of a gG-minus EHV-3 mutant and its gG-positive revertant. When growth characteristics in an equine dermal fibroblast cell line were compared, the plaque size and the growth kinetics of the gG-minus mutant were similar to those of the revertant virus, suggesting that EHV-3 gG does not play a role in direct cell-to-cell transmission or virus proliferation of EHV-3 in tissue culture. The identification and characterization of EHV-3 gG described here provide a solid background for further studies to assess whether this glycoprotein has a function in modulating the host immune response.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 3 , Animais , Cavalos , Proteínas do Envelope Viral/metabolismo , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 3/metabolismo , Linhagem Celular , Glicoproteínas/genética
2.
Autophagy ; 17(2): 439-456, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31983275

RESUMO

Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.


Assuntos
Autofagia/fisiologia , Doença de Chagas/metabolismo , Organelas/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Diferenciação Celular/fisiologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Cisteína Endopeptidases/isolamento & purificação , Endocitose/imunologia , Parasitos/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Trypanosoma cruzi/metabolismo
3.
Reprod Sci ; 28(1): 12-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638281

RESUMO

Rab proteins belong to the Ras superfamily of small monomeric GTPases. These G proteins are the main controllers of vesicular transport in every tissue, among them, the endometrium. They are in charge of to the functional subcellular compartmentalization and cargo transport between organelles and the plasma membrane. In turn, intracellular trafficking contributes to endometrial changes during the menstrual cycle, secretion to the uterine fluid, and trophoblast implantation; however, few reports analyze the role of Rab proteins in the uterus. In general, Rab proteins control the release of cytokines, growth factors, enzymes, hormones, cell adhesion molecules, and mucus. Further, the secretion of multiple compounds into the uterine cavity is required for successful implantation. Therefore, alterations in Rab-controlled intracellular transport likely impair secretory processes to the uterine fluid that may correlate with abnormal endometrial development and failed reproductive outcomes. Overall, they could explain recurrent miscarriages, female infertility, and/or assisted reproductive failure. Interestingly, estrogen (E2) and progesterone (P) regulate gene expression of Rab proteins involved in secretory pathways. This review aims to gather information regarding the role of Rab proteins and intracellular trafficking in the endometrium during the different menstrual phases, and in the generation of a receptive stage for embryo implantation, modulated by E2 and P. This knowledge might be useful for the development of novel reproductive therapies that overcome low implantation rates of assisted reproductive procedures.


Assuntos
Endométrio/metabolismo , Ciclo Menstrual/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Endométrio/microbiologia , Endométrio/virologia , Estradiol/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Progesterona/metabolismo , Transporte Proteico , Doenças Bacterianas Sexualmente Transmissíveis/metabolismo , Doenças Bacterianas Sexualmente Transmissíveis/microbiologia , Doenças Virais Sexualmente Transmissíveis/metabolismo , Doenças Virais Sexualmente Transmissíveis/virologia
4.
Proc Natl Acad Sci U S A ; 115(26): E6000-E6009, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891717

RESUMO

Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex ß1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Galectina 1/metabolismo , Linfogranuloma Venéreo/metabolismo , Animais , Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Feminino , Galectina 1/genética , Células HeLa , Humanos , Linfogranuloma Venéreo/genética , Linfogranuloma Venéreo/patologia , Masculino , Camundongos
5.
PLoS Negl Trop Dis ; 11(11): e0006049, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091711

RESUMO

Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.


Assuntos
Autofagia , Regulação da Expressão Gênica , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/fisiologia , Adulto , Animais , Autofagossomos/parasitologia , Diferenciação Celular , Doença de Chagas/parasitologia , Humanos , Estágios do Ciclo de Vida/fisiologia , Masculino , Poliaminas/metabolismo , Espermidina/metabolismo , Estresse Fisiológico , Trypanosoma cruzi/genética
6.
Cell Tissue Res ; 365(2): 425-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26987820

RESUMO

The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.


Assuntos
Células Endoteliais/citologia , Contração Muscular/fisiologia , Túbulos Seminíferos/citologia , Túbulos Seminíferos/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Endotelina-1/farmacologia , Humanos , Masculino , Microscopia Confocal , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Ratos Wistar , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/ultraestrutura
7.
Biol Reprod ; 86(5): 150, 1-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357548

RESUMO

In the mammalian testis, peritubular myoid cells (PM cells) surround the seminiferous tubules (STs), express cytoskeletal markers of true smooth muscle cells, and participate in the contraction of the ST. It has been claimed that PM cells contain bundles of actin filaments distributed orthogonally in an intermingled mesh. Our hypothesis is that these actin filaments are not forming a random intermingled mesh, but are actually arranged in contractile filaments in independent layers. The aim of this study is to describe the organization of the actin cytoskeleton in PM cells from adult rat testes and its changes during endothelin-1-induced ST contraction. For this purpose, we isolated segments of ST corresponding to the stages IX-X of the spermatogenic cycle (ST segments), and analyzed the actin and myosin filament distribution by confocal and transmission electron microscopy. We found that PM cells have actin and myosin filaments interconnected in thick bundles (AF-MyF bundles). These AF-MyF bundles are distributed in two independent layers: an inner layer toward the seminiferous epithelium, and an outer layer toward the interstitium, with the bundles oriented perpendicularly and in parallel to the main ST axis, respectively. In endothelin-1 contracted ST segments, PM cells increased their thickness and reduced their length in both directions, parallel and perpendicular to the main ST axis. The AF-MyF bundles maintained the same organization in two layers, although both layers appeared significantly thicker. We believe that this is the first time this arrangement of AF-MyF bundles in two independent layers has been shown in smooth muscle cells, and that this organization would allow the cell to generate contractile force in two directions.


Assuntos
Citoesqueleto de Actina/fisiologia , Músculo Liso/citologia , Miosinas/fisiologia , Túbulos Seminíferos/citologia , Animais , Endotelina-1/fisiologia , Masculino , Músculo Liso/fisiologia , Ratos , Túbulos Seminíferos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA