Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(3): e0086123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294215

RESUMO

We report the draft genomes of four Kluyveromyces marxianus isolates obtained from the elaboration process of henequen (Agave fourcroydes) mezcal, a Mexican alcoholic beverage. The average nucleotide identity analysis revealed that isolates derived from agave plants are distinct from those from other environments, including agave fermentations.

3.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432865

RESUMO

In the present study, the nematicidal and acaricidal activity of three Enterobacter endophytic strains isolated from Mimosa pudica nodules was evaluated. The percentages of mortality of Enterobacter NOD4 against Panagrellus redivivus was 81.2%, and against Nacobbus aberrans 70.1%, Enterobacter NOD8 72.4% and 62.5%, and Enterobacter NOD10 64.8% and 58.7%, respectively. While against the Tyrophagus putrescentiae mite, the mortality percentages were 68.2% due to Enterobacter NOD4, 64.3% due to Enterobacter NOD8 and 77.8% due to Enterobacter NOD10. On the other hand, the ability of the three Enterobacter strains to produce indole acetic acid and phosphate solubilization, characteristics related to plant growth-promoting bacteria, was detected. Bioinformatic analysis of the genomes showed the presence of genes related to IAA production, phosphate solubilization, and nitrogen fixation. Phylogenetic analyzes of the recA gene, phylogenomics, and average nucleotide identity (ANI) allowed us to identify the strain Enterobacter NOD8 related to E. mori and Enterobacter NOD10 as E. asburiae, while Enterobacter NOD4 was identified as a possible new species of this species. The plant growth-promoting, acaricidal and nematicidal activity of the three Enterobacter strains makes them a potential agent to include in biocontrol alternatives and as growth-promoting bacteria in crops of agricultural interest.

4.
Arch Microbiol ; 204(1): 73, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951665

RESUMO

Accurate recognition of the closely related species Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola by phenotypic, biochemical and automated tests is notoriously unreliable in hospitals' diagnostic laboratories. A comparative genomics approach was conducted for the correct differentiation of the main bacterial species in the K. pneumoniae complex. Analysis of the deduced proteomes of 87 unique genomes of the Klebsiella in public databases, was used for the identification of unique protein family members. This allowed the design of a multiplex-PCR assay for the correct differentiation of these three species from different origins. This system allowed us to determine the prevalence of K. pneumoniae, K. quasipneumoniae and K. variicola among a collection of 552 clinical isolates. Of these, 87.3% (482/552) isolates corresponded to K. pneumoniae, 6.7% (33/552) to K. quasipneumoniae and 5.9% (33/552) to K. variicola. The multiplex-PCR results showed a 100% accuracy for the correct identification of the three species evaluated, which was validated with rpoB phylogenetic sequence analysis.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella/genética , Klebsiella pneumoniae/genética , Reação em Cadeia da Polimerase Multiplex , Filogenia
5.
Microbiol Resour Announc ; 10(26): e0032921, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34197204

RESUMO

Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.

6.
Microorganisms ; 9(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067853

RESUMO

The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.

7.
Front Microbiol ; 11: 579612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391198

RESUMO

Hypermucoviscosity (hmv) is a capsule-associated phenotype usually linked with hypervirulent Klebsiella pneumoniae strains. The key components of this phenotype are the RmpADC proteins contained in non-transmissible plasmids identified and studied in K. pneumoniae. Klebsiella variicola is closely related to K. pneumoniae and recently has been identified as an emergent human pathogen. K. variicola normally contains plasmids, some of them carrying antibiotic resistance and virulence genes. Previously, we described a K. variicola clinical isolate showing an hmv-like phenotype that harbors a 343-kb pKV8917 plasmid. Here, we investigated whether pKV8917 plasmid carried by K. variicola 8917 is linked with the hmv-like phenotype and its contribution to virulence. We found that curing the 343-kb pKV8917 plasmid caused the loss of hmv, a reduction in capsular polysaccharide (P < 0.001) and virulence. In addition, pKV8917 was successfully transferred to Escherichia coli and K. variicola strains via conjugation. Notably, when pKV8917 was transferred to K. variicola, the transconjugants displayed an hmv-like phenotype, and capsule production and virulence increased; these phenotypes were not observed in the E. coli transconjugants. These data suggest that the pKV8917 plasmid carries novel hmv and capsule determinants. Whole-plasmid sequencing and analysis revealed that pKV8917 does not contain rmpADC/rmpA2 genes; thus, an alternative mechanism was searched. The 343-kb plasmid contains an IncFIB backbone and shares a region of ∼150 kb with a 99% identity and 49% coverage with a virulence plasmid from hypervirulent K. variicola and multidrug-resistant K. pneumoniae. The pKV8917-unique region harbors a cellulose biosynthesis cluster (bcs), fructose- and sucrose-specific (fru/scr) phosphotransferase systems, and the transcriptional regulators araC and iclR, respectively, involved in membrane permeability. The hmv-like phenotype has been identified more frequently, and recent evidence supports the existence of rmpADC/rmpA2-independent hmv-like pathways in this bacterial genus.

8.
Sci Rep ; 9(1): 10610, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337792

RESUMO

Klebsiella variicola is considered an emerging pathogen in humans and has been described in different environments. K. variicola belongs to Klebsiella pneumoniae complex, which has expanded the taxonomic classification and hindered epidemiological and evolutionary studies. The present work describes the molecular epidemiology of K. variicola based on MultiLocus Sequence Typing (MLST) developed for this purpose. In total, 226 genomes obtained from public data bases and 28 isolates were evaluated, which were mainly obtained from humans, followed by plants, various animals, the environment and insects. A total 166 distinct sequence types (STs) were identified, with 39 STs comprising at least two isolates. The molecular epidemiology of K. variicola showed a global distribution for some STs was observed, and in some cases, isolates obtained from different sources belong to the same ST. Several examples of isolates corresponding to kingdom-crossing bacteria from plants to humans were identified, establishing this as a possible route of transmission. goeBURST analysis identified Clonal Complex 1 (CC1) as the clone with the greatest distribution. Whole-genome sequencing of K. variicola isolates revealed extended-spectrum ß-lactamase- and carbapenemase-producing strains with an increase in pathogenicity. MLST of K. variicola is a strong molecular epidemiological tool that allows following the evolution of this bacterial species obtained from different environments.


Assuntos
Infecções por Klebsiella/epidemiologia , Klebsiella/genética , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia
9.
Sci Rep ; 8(1): 3149, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453341

RESUMO

Vibrio cholerae, a pandemic diarrheagenic bacterium, is able to synthesize the essential vitamin riboflavin through the riboflavin biosynthetic pathway (RBP) and also to internalize it through the RibN importer. In bacteria, the way riboflavin biosynthesis and uptake functions correlate is unclear. To gain insights into the role of the riboflavin provision pathways in the physiology of V. cholerae, we analyzed the transcriptomics response to extracellular riboflavin and to deletions of ribD (RBP-deficient strain) or ribN. Many riboflavin-responsive genes were previously reported to belong to the iron regulon, including various iron uptake genes. Real time PCR analysis confirmed this effect and further documented that reciprocally, iron regulates RBP and ribN genes in a riboflavin-dependent way. A subset of genes were responding to both ribD and ribN deletions. However, in the subset of genes specifically affected in the ∆ribD strain, the functional terms protein folding and oxidation reduction process were enriched, as determined by a Gene Ontology analysis. In the gene subset specifically affected in the ∆ribN strain, the cytochrome complex assembly functional term was enriched. Results suggest that iron and riboflavin interrelate to regulate its respective provision genes and that both common and specific effects of biosynthesized and internalized riboflavin exist.


Assuntos
Perfilação da Expressão Gênica , Ferro/metabolismo , Riboflavina/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Transporte Biológico , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA