Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090422

RESUMO

PURPOSE: This study aimed to investigate the relationship between the interferon-gamma (IFN-γ) pathway in different tumor microenvironments (TME) and patients' prognosis, as well as the regulatory mechanisms of this pathway in tumor cells. METHODS: Using RNA-seq data from the TCGA database, we analyzed the predictive value of the IFN-γ pathway across various tumors. We employed a univariate Cox regression model to assess the prognostic significance of IFN-γ signaling in different tumor types. Additionally, we analyzed single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database to examine the distribution characteristics of the IFN-γ pathway and explore its regulatory mechanisms, highlighting how IFN-γ influenced cellular interactions within the TME. RESULTS: Our analysis revealed a significant association between the IFN-γ pathway and adverse prognosis in pan-cancer tissues (P < 0.001). Interestingly, this correlation varied regarding positive and negative regulation across different tumor types. Through a detailed examination of scRNA-seq data, we found that the IFN-γ pathway exerted substantial regulatory effects on stromal and immune cells. In contrast, its expression and regulatory patterns in tumor cells exhibited diversity and heterogeneity. Further analysis indicated that the IFN-γ pathway not only enhanced the immunogenicity of tumor cells but also inhibited their proliferation. Cell-cell interaction analysis confirmed the pivotal role of the IFN-γ pathway within the overall regulatory network. Moreover, we identified HMGB2 (high mobility group box 2) in T cells as a potential key regulator of tumor cell proliferation. CONCLUSIONS: The IFN-γ pathway exhibited a dual function by both suppressing tumor cell proliferation and enhancing their immunogenicity, positioning it as a pivotal target for refined cancer diagnosis and cancer strategies.

2.
Genet Mol Biol ; 43(4): e20200092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33001132

RESUMO

Gynostemma yixingense, an important medicinal member of the Cucurbitaceae family, is an endemic herbaceous species distributed in East China. It is morphologically similar to the plants in the same genus, which resulted in some confusion in identification and application. Meanwhile, there are still some controversies in taxonomy. Herein, the complete chloroplast genome sequence of G. yixingense was obtained by Illumina paired-end sequencing technology and compared to other chloroplast genome sequences of congeneric species. The complete chloroplast genome of G. yixingense is 157,910 bp in length with 36.94% GC content and contains a large single-copy (LSC) region of 86,791 bp, a small single-copy (SSC) region of 18,635 bp and a pair of inverted repeat (IR) regions of 26,242 bp. The whole genome contains 133 unique genes, including 87 protein-coding genes, 37 tRNA genes, eight rRNA genes and one pseudogene. In addition, 74 simple sequence repeats (SSRs) were identified, most of which were A/T rich. The phylogenetic analysis indicated that G. yixingense had the closest relationship to G. laxiflorum. The result of this study provided an important theoretical basis for chloroplast genome and phylogenetic analysis of G. yixingense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA