Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067597

RESUMO

Porous silicon (PSi) on p++-type (111) silicon substrate has been fabricated by electronically etching method in hydrofluoric acid (HF) media from 5 to 110 mA/cm2 of anodizing current density. The problem of determining the optical properties of (111) PSi is board through implementing a photoacoustic (PA) technique coupled to an electrochemical cell for real-time monitoring of the formation of porous silicon thin films. PA amplitude allows the calculation of the real part of the films refractive index and porosity using the reflectance self-modulation due to the interference effect between the PSi film and the substrate that produces a periodic PA amplitude. The optical properties are studied from specular reflectance measurements fitted through genetic algorithms, transfer matrix method (TMM), and the effective medium theory, where the Maxwell Garnett (MG), Bruggeman (BR), and Looyenga (LLL) models were tested to determine the most suitable for pore geometry and compared with the in situ PA method. It was found that (111) PSi exhibit a branched pore geometry producing optical anisotropy and high scattering films.

2.
Sci Rep ; 9(1): 14732, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611613

RESUMO

We present a methodology to fabricate one-dimensional porous silicon (PSi) photonic crystals in the visible range by controlled etching and monitored by photoacoustics. Photoacoustic can record in-situ information about changes in the optical path and chemical reaction as well as in temperature, refractive index, and roughness during porous layers formation. Radiometry imaging can determine the carrier distribution of c-Si substrate that is a fundamental parameter to obtain high-quality PSi films. An electrochemical cell was calibrated through a series of single PSi layers that allows knowing the PA amplitude period, porosity, and roughness as a function of the current density. Optical properties of single layers were determined using the reflectance response in the UV-Vis range to solve the inverse problem through genetic algorithms. PhC structures were designed using the transfer matrix method and effective media approximation.Based on the growth kinetics of PSi single layers, those structures were fabricated by electrochemical etching monitored and controlled by in-situ photoacoustics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA