Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(7): 5009-5026, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38801124

RESUMO

INTRODUCTION: While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS: In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS: Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION: The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.


Assuntos
Demência , Humanos , Demência/terapia , Demência/diagnóstico , Demência/genética , Demência/epidemiologia , América Latina/epidemiologia , México/epidemiologia , Doença de Alzheimer/terapia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Pesquisa Biomédica , Congressos como Assunto
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835161

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aß) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estudo de Associação Genômica Ampla , Mutação , Doenças Neurodegenerativas/genética , Presenilina-1/genética , Presenilina-2/genética
3.
Curr Issues Mol Biol ; 44(12): 5963-5985, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36547067

RESUMO

Neurodegenerative diseases, tauopathies, constitute a serious global health problem. The etiology of these diseases is unclear and an increase in their incidence has been projected in the next 30 years. Therefore, the study of the molecular mechanisms that might stop these neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using Machine and Deep Learning algorithms has been widely studied for medical imaging such as Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the brains of patients have not yet been used for this purpose. These studies may represent a valuable tool for monitoring aberrant chemical changes or pathological post-translational modifications of the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification of Tau pathology of Alzheimer's disease and Progressive Supranuclear Palsy by analyzing post-mortem immunofluorescence images with different Tau biomarkers performed with models generated with the architecture ResNet-IFT using Transfer Learning. These models' outputs were interpreted with interpretability algorithms such as Guided Grad-CAM and Occlusion Analysis. To determine the best classifier, four different architectures were tested. We demonstrated that our design was able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation concerning the proper classification involving different structural patterns in the immunoreactivity of the Tau protein in NFTs present in the brains of patients with Progressive Supranuclear Palsy and Alzheimer's disease.

4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232716

RESUMO

The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.


Assuntos
Encéfalo , Complexo I de Transporte de Elétrons , Mitocôndrias , Estresse Oxidativo , Sinucleinopatias , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Estresse Nitrosativo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Sinucleinopatias/metabolismo , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
5.
Biology (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009757

RESUMO

Efforts have been made to diagnose and predict the course of different neurodegenerative diseases through various imaging techniques. Particularly tauopathies, where the tau polypeptide is a key participant in molecular pathogenesis, have significantly increased their morbidity and mortality in the human population over the years. However, the standard approach to exploring the phenomenon of neurodegeneration in tauopathies has not been directed at understanding the molecular mechanism that causes the aberrant polymeric and fibrillar behavior of the tau protein, which forms neurofibrillary tangles that replace neuronal populations in the hippocampal and cortical regions. The main objective of this work is to implement a novel quantification protocol for different biomarkers based on pathological post-translational modifications undergone by tau in the brains of patients with tauopathies. The quantification protocol consists of an adaptation of the U-Net neural network architecture. We used the resulting segmentation masks for the quantification of combined fluorescent signals of the different molecular changes tau underwent in neurofibrillary tangles. The quantification considers the neurofibrillary tangles as an individual study structure separated from the rest of the quadrant present in the images. This allows us to detect unconventional interaction signals between the different biomarkers. Our algorithm provides information that will be fundamental to understanding the pathogenesis of dementias with another computational analysis approach in subsequent studies.

6.
Cells ; 11(15)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892559

RESUMO

Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.


Assuntos
COVID-19 , Animais , Autofagia/fisiologia , Homeostase , Humanos , Lisossomos/metabolismo , Mamíferos , SARS-CoV-2
7.
Diagnostics (Basel) ; 12(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35626321

RESUMO

Alzheimer's disease (AD) is neurodegeneration that accounts for 60-70% of dementia cases. Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics is a relevant research tool that allows for identifying several pathways related to AD. Open-access databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed after background correction and data normalization; the Limma package was used for differential expression analysis (DEA) through statistical R programming language. Data were corrected with the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were considered to be significant. The direction of the change in gene expression was determined by its variation in the log2-fold change between healthy controls and patients. We performed the functional enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses, enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process, and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared genes between brain and blood, with potential use as AD biomarkers for blood tests.

8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769132

RESUMO

Parkinson's disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Doenças Neuroinflamatórias/etiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia
9.
J Alzheimers Dis ; 84(3): 917-935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34633316

RESUMO

Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Células-Tronco/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Regulamentação Governamental , Hipocampo/patologia , Humanos , Neocórtex/patologia
10.
Front Neurol ; 12: 660087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912129

RESUMO

The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA