Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 622057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681200

RESUMO

Tellurium oxyanion, tellurite (TeO 3 -2), is a highly toxic compound for many organisms. Its presence in the environment has increased over the past years due to industrial manufacturing processes and has been associated with adverse effects on human health. Although tellurite induces the phosphorylation of eIF2α, DNA damage and oxidative stress, the molecular mechanisms related to the cellular responses to tellurite-induced stress are poorly understood. In this work, we evaluated the ability of tellurite to induce phosphorylation of eIF2α, stress granules (SGs) assembly and their relationship with DNA damage in U2OS cells. We demonstrate that tellurite promotes the assembly of bona fide cytoplasmic SGs. Unexpectedly, tellurite also induces the assembly of nuclear SGs. Interestingly, we observed that the presence of tellurite-induced nuclear SGs correlates with γH2AX foci. However, although H2O2 also induce DNA damage, no nuclear SGs were observed. Our data show that tellurite promotes the assembly of cytoplasmic and nuclear SGs in response to oxidative stress and DNA damage, revealing a new aspect of cellular stress response mediated by the assembly of nuclear stress granules.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31681621

RESUMO

Regulation of RNA homeostasis or "RNAstasis" is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.


Assuntos
Interações Hospedeiro-Patógeno , Organelas , Viroses/metabolismo , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Grânulos Citoplasmáticos , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Organelas/metabolismo , Organelas/virologia , Transdução de Sinais , Estresse Fisiológico , Viroses/genética , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Replicação Viral , Vírus/classificação , Vírus/efeitos dos fármacos , Vírus/genética
3.
PLoS Negl Trop Dis ; 10(7): e0004799, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414047

RESUMO

Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.


Assuntos
Glicoproteínas/metabolismo , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Peptídeos/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Glicoproteínas/química , Glicoproteínas/genética , Orthohantavírus/química , Orthohantavírus/genética , Humanos , Peptídeos/química , Peptídeos/genética , Domínios Proteicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
4.
J Virol ; 88(4): 2344-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335294

RESUMO

How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.


Assuntos
Orthohantavírus/metabolismo , Virus Puumala/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Western Blotting , Reações Cruzadas/imunologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Orthohantavírus/genética , Humanos , Virus Puumala/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA