Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(34): 82142-82151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37322400

RESUMO

Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, especially reef-building corals. These dinoflagellates are sensitive to environmental changes, and understanding the factors that can increase the resistance of the symbionts is crucial for the elucidation of the mechanisms involved with coral bleaching. Here, we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by concentration (1760 vs 440 µM) and source (sodium nitrate vs urea) of nitrogen after light and thermal stress exposure. The effectiveness in the use of the two nitrogen forms was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, regardless of source, increased D. glynnii growth, chlorophyll-a, and peridinin levels. During the pre-stress period, the use of urea accelerated the growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, high nitrate conditions increased cell growth, but no changes in pigments composition was observed. On the other hand, during thermal stress, a steep and steady decline in cell densities over time was observed, except for high urea condition, where there is cellular division and peridinin accumulation 72 h after the thermal shock. Our findings suggest peridinin has a protective role during the thermal stress, and the uptake of urea by D. glynnii can alleviate thermal stress responses, eventually mitigating coral bleaching events.


Assuntos
Antozoários , Dinoflagellida , Animais , Dinoflagellida/fisiologia , Nitrogênio , Antozoários/fisiologia , Simbiose , Recifes de Corais
2.
Appl Microbiol Biotechnol ; 106(18): 6263-6276, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972515

RESUMO

Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.


Assuntos
Dinoflagellida , Antioxidantes , Carotenoides , Clorofila , Ácidos Docosa-Hexaenoicos
3.
Geobiology ; 19(1): 63-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931664

RESUMO

Coccolithophores are a key functional phytoplankton group and produce minute calcite plates (coccoliths) in the sunlit layer of the pelagic ocean. Coccoliths significantly contribute to the sediment record since the Triassic and their geometry have been subject to palaeoceanographic and biological studies to retrieve information on past environmental conditions. Here, we present a comprehensive analysis of coccolith, coccosphere and cell volume data of the Southern Ocean Emiliania huxleyi ecotype A, subject to gradients of temperature, irradiance, carbonate chemistry and macronutrient limitation. All tested environmental drivers significantly affect coccosphere, coccolith and cell volume with driver-specific sensitivities. However, a highly significant correlation emerged between cell and coccolith volume with Vcoccolith  = 0.012 ± 0.001 * Vcell  + 0.234 ± 0.066 (n = 23, r2  = .85, p < .0001, σest  = 0.127), indicating a primary control of coccolith volume by physiological modulated changes in cell volume. We discuss the possible application of fossil coccolith volume as an indicator for cell volume/size and growth rate and, additionally, illustrate that macronutrient limitation of phosphorus and nitrogen has the predominant influence on coccolith volume in respect to other environmental drivers. Our results provide a solid basis for the application of coccolith volume and geometry as a palaeo-proxy and shed light on the underlying physiological reasons, offering a valuable tool to investigate the fossil record of the coccolithophore E. huxleyi.


Assuntos
Haptófitas , Carbonato de Cálcio , Tamanho Celular , Oceanos e Mares , Fitoplâncton
4.
Environ Manage ; 57(3): 740-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616429

RESUMO

An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.


Assuntos
Ciclo do Carbono , Ecossistema , Água do Mar/química , Oceano Atlântico , Atmosfera , Biodiversidade , Brasil , Dióxido de Carbono/análise , Carbonatos , Humanos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA