Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 634: 122629, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682507

RESUMO

Photodynamic therapy using Hypericin (Hy-PDT) is an alternative non-invasive treatment that enables selective tumor inhibition and angiogenesis derived from the differential recruitment of endothelial cells in the tumor microenvironment. Most PDT studies were performed on in vitro models without vascular biomechanical simulation. Our work strives to develop a microchip that generates a constant shear stress force to investigate the Hy-PDT efficiency on human umbilical vein endothelial cells (HUVECs). The microchip with a single straight microchannel was composed of the bottom layer (polystyrene), the middle layer (double-sided biocompatible adhesive tape), and the top layer (polyester film) and could produce shear stress in the range of 1.4 - 7.0 dyn cm-2. The quantification of vascular endothelial growth factor (VEGF), cell viability, and activities of caspases 3 and 7 were assayed to validate the microchip and Hy-PDT efficacy. After the endothelization, static and dynamic cell incubations with Hy were conducted in microchips. Compared to static systems, the shear stress displayed its effect on the increasing release of VEGF and promoted more cell damage and cell death via necrosis during Hy-PDT. In conclusion, the expressive shear stress-dependent manner during PDT treatments suggests that the microchip could be an essential approach in preclinical tests to evaluate the therapeutic outcome considering the endothelial shear stress microenvironment.


Assuntos
Perileno , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais , Sistemas Microfisiológicos , Antracenos
2.
J Photochem Photobiol B ; 223: 112303, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34509718

RESUMO

Hypericin (Hy) is a hydrophobic photosensitizer used in photodynamic therapy for cancer therapeutic. In this study, Hy-loaded oil-in-water (O/W) nanoemulsions (NEs) were produced by the ultrasonication method combing different biocompatible oils and surfactants to enhance Hy aqueous solubility and bioavailability. Experimental parameters were optimized by the characterization of droplet size, zeta potential, and physicochemical properties. In vitro studies based on the release profile, cytotoxicity, cell morphology, and Hy intracellular accumulation were assayed. Hy at 100 mg L-1 was incorporated into the low viscosity (~0.005 Pa s) NEs with spherical droplets averaging 20-40 nm in size and polydispersity index <0.02. Hy release from the NE was significantly higher (4-fold) than its suspension (p < 0.001). The NEs demonstrated good physical stability during storage at 5 °C for at least six months. The Hy-loaded NEs exhibited an IC50 value 6-fold lower than Hy suspension during PDT against breast cancer cell lines (MCF-7). Cell microscopy imaging confirmed the increased cytotoxic effects of Hy-loaded NEs, showing damaged and apoptotic cells. Confocal laser scanning microscopy evidenced greater Hy delivery through NE into MCF-7 cells followed by improved intracellular ROS generation. Our results suggest that the Hy-loaded NEs can improve hypericin efficacy and assist Hy-PDT's preclinical development as a cancer treatment.


Assuntos
Antracenos/química , Emulsões/química , Nanoestruturas/química , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Radiossensibilizantes/química , Antracenos/metabolismo , Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos/efeitos da radiação , Estabilidade de Medicamentos , Humanos , Luz , Células MCF-7 , Óleos/química , Perileno/química , Perileno/metabolismo , Perileno/farmacologia , Radiossensibilizantes/metabolismo , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sonicação , Temperatura , Água/química
3.
Micromachines (Basel) ; 12(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807118

RESUMO

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA