Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(3): e20230002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791813

RESUMO

KDELR2 has been reported as a promotive factor for the genesis and progression of several malignancies. However, it is uncertain how it affects bladder urothelial carcinoma (BLCA). Using data extracted from online databases, an enhanced expression of KDELR2 in BLCA tissues was verified. Overexpression of KDELR2 was correlated with advanced clinicopathologic characteristics and unfavourable prognosis of BLCA. Receiver operating characteristic analysis highlighted the potential diagnostic value of KDELR2. Univariate and multivariate logistic regression analyses further revealed the predictive effect of KDELR2 for the prognosis of BLCA. KDELR2 was primarily enriched in biological functions related to organization of the extracellular matrix. TIMER, ssGSEA and GEPIA analyses suggested that KDELR2 expression is positively related to the infiltration of macrophages, Th2 cells and neutrophils. Finally, knocking-down of KDELR2 in T24 cells resulted in reduced proliferation, migration and macrophages recruitment. These results suggest that KDELR2 overexpression is an indicator for poor prognosis of BLCA and it has the potential to be employed as an immunotherapy target for BLCA.

2.
Braz. J. Microbiol. ; 48(1): 180-185, jan.-mar. 2017. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-22674

RESUMO

Pullulan is a natural exopolysaccharide with many useful characteristics. However, pullulan is more costly than other exopolysaccharides, which limits its effective application. The purpose of this study was to adopt a novel mixed-sugar strategy for maximizing pullulan production, mainly using potato starch hydrolysate as a low-cost substrate for liquid-state fermentation by Aureobasidium pullulans. Based on fermentation kinetics evaluation of pullulan production by A. pullulans 201253, the pullulan production rate of A. pullulans with mixtures of potato starch hydrolysate and sucrose (potato starch hydrolysate:sucrose = 80:20) was 0.212 h-¹, which was significantly higher than those of potato starch hydrolysate alone (0.146 h-¹) and mixtures of potato starch hydrolysate, glucose, and fructose (potato starch hydrolysate:glucose:fructose = 80:10:10, 0.166 h-¹) with 100 g L-¹ total carbon source. The results suggest that mixtures of potato starch hydrolysate and sucrose could promote pullulan synthesis and possibly that a small amount of sucrose stimulated the enzyme responsible for pullulan synthesis and promoted effective potato starch hydrolysate conversion effectively. Thus, mixed sugars in potato starch hydrolysate and sucrose fermentation might be a promising alternative for the economical production of pullulan.(AU)


Assuntos
Amidos e Féculas , Fermentação , Polissacarídeos/análise , Carbono , Sacarose
3.
Braz. j. microbiol ; 48(1): 180-185, Jan.-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839351

RESUMO

Abstract Pullulan is a natural exopolysaccharide with many useful characteristics. However, pullulan is more costly than other exopolysaccharides, which limits its effective application. The purpose of this study was to adopt a novel mixed-sugar strategy for maximizing pullulan production, mainly using potato starch hydrolysate as a low-cost substrate for liquid-state fermentation by Aureobasidium pullulans. Based on fermentation kinetics evaluation of pullulan production by A. pullulans 201253, the pullulan production rate of A. pullulans with mixtures of potato starch hydrolysate and sucrose (potato starch hydrolysate:sucrose = 80:20) was 0.212 h−1, which was significantly higher than those of potato starch hydrolysate alone (0.146 h−1) and mixtures of potato starch hydrolysate, glucose, and fructose (potato starch hydrolysate:glucose:fructose = 80:10:10, 0.166 h−1) with 100 g L−1 total carbon source. The results suggest that mixtures of potato starch hydrolysate and sucrose could promote pullulan synthesis and possibly that a small amount of sucrose stimulated the enzyme responsible for pullulan synthesis and promoted effective potato starch hydrolysate conversion effectively. Thus, mixed sugars in potato starch hydrolysate and sucrose fermentation might be a promising alternative for the economical production of pullulan.


Assuntos
Ascomicetos/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Solanum tuberosum/química , Fermentação , Glucanos/biossíntese , Amido/química , Carbono/metabolismo , Cinética , Biomassa , Reatores Biológicos , Técnicas de Cultura Celular por Lotes
4.
Braz J Microbiol ; 48(1): 180-185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27923548

RESUMO

Pullulan is a natural exopolysaccharide with many useful characteristics. However, pullulan is more costly than other exopolysaccharides, which limits its effective application. The purpose of this study was to adopt a novel mixed-sugar strategy for maximizing pullulan production, mainly using potato starch hydrolysate as a low-cost substrate for liquid-state fermentation by Aureobasidium pullulans. Based on fermentation kinetics evaluation of pullulan production by A. pullulans 201253, the pullulan production rate of A. pullulans with mixtures of potato starch hydrolysate and sucrose (potato starch hydrolysate:sucrose=80:20) was 0.212h-1, which was significantly higher than those of potato starch hydrolysate alone (0.146h-1) and mixtures of potato starch hydrolysate, glucose, and fructose (potato starch hydrolysate:glucose:fructose=80:10:10, 0.166h-1) with 100gL-1 total carbon source. The results suggest that mixtures of potato starch hydrolysate and sucrose could promote pullulan synthesis and possibly that a small amount of sucrose stimulated the enzyme responsible for pullulan synthesis and promoted effective potato starch hydrolysate conversion effectively. Thus, mixed sugars in potato starch hydrolysate and sucrose fermentation might be a promising alternative for the economical production of pullulan.


Assuntos
Ascomicetos/metabolismo , Fermentação , Glucanos/biossíntese , Solanum tuberosum/química , Amido/metabolismo , Sacarose/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Carbono/metabolismo , Cinética , Amido/química
5.
Braz J Med Biol Res ; 44(11): 1125-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002093

RESUMO

Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.


Assuntos
Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Adesivos Dentinários/toxicidade , Metacrilatos/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Análise de Variância , Animais , Fibroblastos/efeitos dos fármacos , Camundongos , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA