Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neuroimmunol ; 395: 578424, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128432

RESUMO

Neonatal immune activation (NIA) through exposure to lipopolysaccharide (LPS) induces adult behavioral changes in rodents that resemble symptoms of developmental disorders, such as autism spectrum disorder. The neonatal timing of LPS exposure appears to play a crucial role in determining the nature and extent of long-term changes. This study aims to explore whether a 3-day LPS-NIA triggers sex- and age-related changes in gut function, potentially linking LPS-NIA to gastrointestinal dysfunction. Male and female Swiss mice received intraperitoneal injections of LPS or saline on postnatal days (PN) 3, 5, and 7. At PN35 (juvenile) and PN70 (adult), gut inflammation and oxidative stress were evaluated in addition to assessments of working memory, depressive-like symptoms, sociability, and repetitive behavior. Gut examination showed elevated C-X-C motif chemokine receptor 3 (CXCR3) in LPS-NIA mice, while MyD88 and Zonulin expressions were significantly higher only in adult LPS-NIA females. Interleukin (IL)-23 expression increased in juvenile and adult male and juvenile female LPS-NIA mice. Oxidative changes included decreased duodenal reduced glutathione (GSH) in juvenile females and ileal GSH in adult females exposed to LPS-NIA. Regarding behavioral alterations, adult LPS-NIA females exhibited depressive-like behavior. Working memory deficits were observed across all LPS-NIA groups. Only juvenile LPS-NIA females increased grooming, while rearing was higher in adult LPS-NIA mice of both sexes. The findings imply that LPS-NIA impacts intestinal barrier function and causes gut inflammatory alterations that are sex- and age-specific. These findings pave the way for exploring potential mechanisms that could contribute to LPS-induced gastrointestinal disturbances among individuals with ASD.


Assuntos
Animais Recém-Nascidos , Lipopolissacarídeos , Caracteres Sexuais , Animais , Lipopolissacarídeos/toxicidade , Feminino , Camundongos , Masculino , Fatores Etários , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Envelhecimento/imunologia , Envelhecimento/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39004333

RESUMO

OBJECTIVES: This systematic review sought to provide evidence for the effectiveness of common pharmacological interventions used for treating attention deficit hyperactivity disorder (ADHD) symptoms in the autism spectrum disorder (ASD) population, considering studies attempting to find safe and effective drugs. METHODS: We searched for randomized controlled trials describing the effectiveness and/or safety profile of pharmacological interventions for treating ASD and ADHD or ASD with ADHD symptoms using three bibliographic databases: PubMed, Cochrane Library, and Embase. We have chosen ADHD symptoms measured by any clinical scale as the primary outcome. As additional outcomes, we have used other symptoms of aberrant behavior measured by the aberrant behavior checklist, satisfaction with treatment, and peer satisfaction. RESULTS: Twenty-two publications met the inclusion criteria for the systematic review and eight for the meta-analysis. In our investigation, we found a few articles using clonidine, modafinil, and bupropion as interventions when compared to methylphenidate (MPH). Our meta-analysis showed that MPH had positive changes compared to placebo in symptoms such as hyperactivity, irritability, or inattention. However, no effect was found in stereotyped symptoms, and our data's quantitative analysis revealed a large effect of MPH-induced adverse effects on the dropout rate. On the other hand, atomoxetine initiation had positive effects when compared to placebo on symptoms of hyperactivity and inattention. We have found no effect of atomoxetine on stereotypes or irritability. Furthermore, atomoxetine did not influence side effects that caused dropouts from studies. CONCLUSION: Our results indicated that atomoxetine has a modest effect on hyperactivity and inattention symptoms, with a relatively benign profile of side effects. MPH appears to be effective in handling hyperactivity, inattention, and irritability symptoms. However, our results on atomoxetine revealed increased dropouts due to adverse effects when compared to MPH or placebo. Evidence for other substances such as guanfacine, clonidine, bupropion, or modafinil is either preliminary or nonexistent.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Clonidina/uso terapêutico , Metilfenidato/uso terapêutico , Resultado do Tratamento
3.
Neuroscience ; 551: 205-216, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38843988

RESUMO

Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.


Assuntos
Modelos Animais de Doenças , Meio Ambiente , Hipocampo , Esquizofrenia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Hipocampo/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/genética , Camundongos , Masculino , Proteína Duplacortina , Regiões Promotoras Genéticas , Metilação de DNA , Poli I-C , Neurogênese/fisiologia , Filtro Sensorial/fisiologia
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6017-6035, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38386042

RESUMO

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.


Assuntos
Antioxidantes , Doxiciclina , Hipocampo , Mania , Neurônios , Animais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Antioxidantes/farmacologia , Mania/induzido quimicamente , Mania/tratamento farmacológico , Doxiciclina/farmacologia , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Anfetamina/farmacologia , Anfetamina/toxicidade , Modelos Animais de Doenças , Estimulantes do Sistema Nervoso Central/toxicidade , Monoaminas Biogênicas/metabolismo , Dextroanfetamina/farmacologia , Dextroanfetamina/toxicidade , Antimaníacos/farmacologia , Fármacos Neuroprotetores/farmacologia
5.
Curr Neuropharmacol ; 22(1): 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36173067

RESUMO

BACKGROUND: Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS: We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION: The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.


Assuntos
Doença de Alzheimer , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/uso terapêutico , Rim/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Sistema Nervoso Central/metabolismo
6.
BMC Psychiatry ; 23(1): 558, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532985

RESUMO

BACKGROUND: We explored the relationship between symptoms, cognitive performance, neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) (three markers of inflammation), and antipsychotic dose (in chlorpromazine units) in male and female patients with schizophrenia. METHODS: We conducted a cross-sectional analysis in patients with schizophrenia of the complete blood count and the results of neuropsychological testing, using the Welch t-test to compare groups and the Pearson test for correlations. RESULTS: We found that the NLR and the PLR are higher among women with schizophrenia when compared with men. In women, the NLR and the PLR correlate positively with antipsychotic drug dose and inversely with a working memory test (Direct Digit Span). Higher doses of antipsychotics are associated with worse working and semantic memory and mental flexibility in the women in our sample. CONCLUSION: Higher doses of antipsychotics were associated with worse working and semantic memory and mental flexibility in women with schizophrenia. No such correlations were present in men, suggesting that, in female patients, cognitive performance deteriorates as the antipsychotic dose is increased, a finding that could be mediated by inflammatory mechanisms, given the demonstrated relationship to biomarkers of inflammation - e.g., the NLR and the PLR. TRIAL REGISTRATION: NCT03788759 (ClinicalTrials.gov).


Assuntos
Antipsicóticos , Esquizofrenia , Feminino , Humanos , Masculino , Antipsicóticos/uso terapêutico , Cognição , Estudos Transversais , Inflamação , Linfócitos , Neutrófilos , Esquizofrenia/tratamento farmacológico
7.
Mem Inst Oswaldo Cruz ; 118: e220144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018795

RESUMO

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES: To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS: Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS: In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION: RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , RNA Viral , Microglia/metabolismo , Anticorpos Antivirais , Proteínas Recombinantes , Macrófagos/metabolismo
8.
Mol Neurobiol ; 60(7): 3650-3663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36917419

RESUMO

Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERß, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.


Assuntos
Receptores de Estrogênio , Esquizofrenia , Adulto , Humanos , Masculino , Feminino , Animais , Camundongos , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Aromatase/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrogênios/farmacologia , RNA Mensageiro , Proteínas de Ligação ao GTP/metabolismo , Receptores de GABA/metabolismo
9.
Mem. Inst. Oswaldo Cruz ; 118: e220144, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430845

RESUMO

BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.

10.
Oxid Med Cell Longev ; 2022: 6906722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035219

RESUMO

Anxiety disorders are the most prevalent psychiatric disorders being also a comorbid state of other diseases. We aimed to evaluate the anxiolytic-like effects of carvedilol (CVD), a drug used to treat high blood pressure and heart failure with potent antioxidant effects, in animals exposed to chronic unpredictable stress (CUS). To do this, female Swiss mice were exposed to different stressors for 21 days. Between days 15 and 21, the animals received oral CVD (5 or 10 mg/kg) or the antidepressant desvenlafaxine (DVS 10 mg/kg). On the 22nd day, behavioral tests were conducted to evaluate locomotor activity (open field) and anxiety-like alterations (elevated plus-maze-EPM and hole board-HB tests). After behavioral determinations, the animals were euthanized, and the adrenal gland, blood and brain areas, prefrontal cortex (PFC), and hippocampus were removed for biochemical analysis. CUS reduced the crossings while increased rearing and grooming, an effect reversed by both doses of CVD and DVS. CUS decreased the number of entries and permanence time in the open arms of the EPM, while all treatments reversed this effect. CUS reduced the number of head dips in the HB, an effect reversed by CVD. The CUS reduced weight gain, while only CVD5 reversed this effect. A reduction in the cortical layer size of the adrenal gland was observed in stressed animals, which CVD reversed. Increased myeloperoxidase activity (MPO) and interferon-γ (IFN-γ), as well as reduction of interleukin-4 (IL-4) induced by CUS, were reversed by CVD. DVS and CVD increased IL-6 in both brain areas. In the hippocampus, DVS caused an increase in IFN-γ. Our data show that CVD presents an anxiolytic effect partially associated with immune-inflammatory mechanism regulation.


Assuntos
Ansiolíticos , Doenças Cardiovasculares , Animais , Antioxidantes , Ansiedade , Comportamento Animal , Carvedilol , Feminino , Hipocampo , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA