Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999946

RESUMO

The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.


Assuntos
Proliferação de Células , Interleucina-2 , Fator de Transcrição STAT5 , Neoplasias do Colo do Útero , Humanos , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Feminino , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Glicólise/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , NAD/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais/efeitos dos fármacos , Ácido Láctico/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298413

RESUMO

Bisphenol A (BPA) is a ubiquitous synthetic compound used as a monomer in the production of polycarbonate plastics and epoxy resins. Even at low doses, BPA has been associated with the molecular progression of diseases such as obesity, metabolic syndrome, and hormone-regulated cancers due to its activity as an endocrine-disrupting chemical (EDC). Consequently, the use of BPA has been regulated worldwide by different health agencies. BPA structural analogs such as bisphenol S and bisphenol F (BPS and BPF) have emerged as industrial alternatives, but their biological activity in the molecular progression of cancer remains unclear. Prostate cancer (PCa) is a hormone-dependent cancer, and the role of BPA structural analogs in PCa progression is still undescribed. In this work, we use an in vitro model to characterize the transcriptomic effect of low-concentration exposure to bisphenol A, S, or F in the two main stages of the disease: androgen dependency (LNCaP) and resistance (PC-3). Our findings demonstrated that the low concentration exposure to each bisphenol induced a differential effect over PCa cell lines, which marks the relevance of studying the effect of EDC compounds through all the stages of the disease.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Linhagem Celular , Neoplasias da Próstata/genética , Hormônios
3.
Cells ; 12(12)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371030

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176055

RESUMO

The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or metastasis. Intravasated platelets (PLT) undergo changes in the TME that convert them into tumor-educated platelets (TEP), which supports the development of cancer, angiogenesis, and metastasis through the degranulation and release of biomolecules. Several authors have reported that the deregulation of PF4, VEGF, PDGF, ANG-1, WASF3, LAPTM4B, TPM3, and TAC1 genes participates in breast cancer progression, angiogenesis, and metastasis. The present work aimed to analyze the expression levels of this set of genes in tumor tissues and platelets derived from breast cancer patients by reverse transcription-quantitative polymerase chain reaction (RTqPCR) assays, in order to determine if there was an expression correlation between these sources and to take advantage of the new information to be used in possible diagnosis by liquid biopsy. Data from these assays showed that platelets and breast cancer tumors present similar expression levels of a subset of these genes' mRNAs, depending on the molecular subtype, comorbidities, and metastasis presence.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/metabolismo , Plaquetas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica , Microambiente Tumoral/genética , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
5.
Cell Oncol (Dordr) ; 45(1): 85-101, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35013999

RESUMO

PURPOSE: Obesity is as an important risk factor and has been associated with a worse prognosis in at least 13 distinct tumor types. This is partially due to intercellular communication between tumor cells and adipose tissue-derived stem cells (ADSCs), which are increased in obese individuals. As yet, however, little is known about the molecular changes occurring in ADSCs in these conditions. Cervical cancer has a high incidence and mortality rate in women from developing countries, particularly in those with a high body mass index (BMI). METHODS: We analyzed the expression profile of ADSCs co-cultured with cervical cancer cells through massive RNA sequencing followed by evaluation of various functional alterations resulting from the modified transcriptome. RESULTS: A total of 761 coding and non-coding dysregulated RNAs were identified in ADSCs after co-culture with HeLa cells (validation in CaSki and SiHA cells). Subsequent network analysis showed that these changes were correlated with migration, stemness, DNA repair and cytokine production. Functional experiments revealed a larger ALDHhigh subpopulation and a higher migrative capacity of ADSCs after co-culture with HeLa cells. Interestingly, CXCL3 and its intragenic long-noncoding RNA, lnc-CXCL3, were found to be co-regulated during co-culture. A loss-of-function assay revealed that lnc-CXCL3 acts as a key regulator of CXCL3 expression. CONCLUSIONS: Our results suggest that intercellular communication between ADSCs and cervical cancer cells modifies the RNA expression profile in the former, including that of lncRNAs, which in turn can regulate the expression of diverse chemokines that favor malignancy-associated capacities such as migration.


Assuntos
Neoplasias do Colo do Útero , Adipócitos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Feminino , Células HeLa , Humanos , Células-Tronco/metabolismo , Células-Tronco/patologia , Neoplasias do Colo do Útero/patologia
6.
Am J Physiol Cell Physiol ; 322(3): C421-C460, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080923

RESUMO

In recent years, technological advances have revealed a large potential number of long noncoding RNAs (lncRNAs). Findings recognize lncRNAs as orchestrating molecules in a wide range of processes, at the transcriptional and posttranscriptional levels, although fewer studies address function. For differentiation, which consists of rearrangements in the gene expression profile and activation of stage- and cell type-dependent signaling mechanisms, the relevance of lncRNAs becomes crucial. The relationship between lncRNAs and key molecular factors in differentiation is strengthening; therefore the present review aims to comprehensively explain the role of lncRNAs in the signaling network involved in the main types of mesenchymal differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. Notably, a step toward the integration of lncRNAs in the field of cell differentiation promises an exceptional impact.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Adipogenia/genética , Diferenciação Celular/genética , Osteogênese/genética , RNA Longo não Codificante/genética
7.
Oncol Rep ; 37(5): 3026-3036, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28393224

RESUMO

Breast cancer (BC) is a disease with different clinical, histological and molecular characteristics, frequently presenting mutated tumour-suppressing genes and oncogenes. P53 is a known tumour suppressor that is often mutated in BC; several mutations in p53 inhibit its role as a transcriptional repressor of several oncogenes. Topoisomerase 2α (TOP2α) is a gene target of p53, and it is also a known target for anthracyclines. The aim of the present study, was to analyse the genetic alterations of p53 and TOP2α genes and their levels of protein expression, as well as their association with survival in Mexican women with BC. A total of 102 biopsies were collected (tumour and adjacent tissues) from patients with BC. To identify point mutations and deletions in the p53 gene, the Sanger sequencing method was carried out. Deletions or amplifications for TOP2α gene were determined using quantitative polymerase chain reaction (qPCR). In addition, the expression of the TOP2α and p53 proteins was evaluated by western blotting. Furthermore, p53 protein expression was analysed by proximity ligation assay (PLA)-qPCR. Only 28.5% of the patients were found to have triple-negative breast cancer (TNBC); the average age at the time of diagnosis of these patients was 50 years, and Scarff-Bloom-Richardson (SBR) histological grade III (p=0.0089). No differences in point mutations or deletions in p53, and deletions or amplifications as well as protein expression level of TOP2α were observed between patients with TNBC and non-TNBC patients. However, patients with TNBC showed p53 protein overexpression as determined by PLA-qPCR and western blotting (p<0.0001). Furthermore, we found an association between TOP2α amplification and overexpression of its protein in patients with TNBC (p<0.0001). Concerning p53, overexpression resulted in a lower survival in patients with BC.


Assuntos
Antígenos de Neoplasias/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Análise de Sequência de DNA/métodos , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , México , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
8.
PLoS One ; 9(12): e114104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460568

RESUMO

Lung cancer is the leading cause of death from malignant diseases worldwide, with the non-small cell (NSCLC) subtype accounting for the majority of cases. NSCLC is characterized by frequent genomic imbalances and copy number variations (CNVs), but the epigenetic aberrations that are associated with clinical prognosis and therapeutic failure remain not completely identify. In the present study, a total of 55 lung cancer patients were included and we conducted genomic and genetic expression analyses, immunohistochemical protein detection, DNA methylation and chromatin immunoprecipitation assays to obtain genetic and epigenetic profiles associated to prognosis and chemoresponse of NSCLC patients. Finally, siRNA transfection-mediated genetic silencing and cisplatinum cellular cytotoxicity assays in NSCLC cell lines A-427 and INER-37 were assessed to describe chemoresistance mechanisms involved. Our results identified high frequencies of CNVs (66-51% of cases) in the 7p22.3-p21.1 and 7p15.3-p15.2 cytogenetic regions. However, overexpression of genes, such as MEOX2, HDAC9, TWIST1 and AhR, at 7p21.2-p21.1 locus occurred despite the absence of CNVs and little changes in DNA methylation. In contrast, the promoter sequences of MEOX2 and TWIST1 displayed significantly lower/decrease in the repressive histone mark H3K27me3 and increased in the active histone mark H3K4me3 levels. Finally these results correlate with poor survival in NSCLC patients and cellular chemoresistance to oncologic drugs in NSCLC cell lines in a MEOX2 and TWIST1 overexpression dependent-manner. In conclusion, we report for the first time that MEOX2 participates in chemoresistance irrespective of high CNV, but it is significantly dependent upon H3K27me3 enrichment probably associated with aggressiveness and chemotherapy failure in NSCLC patients, however additional clinical studies must be performed to confirm our findings as new probable clinical markers in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Aberrações Cromossômicas , Cromossomos Humanos Par 7 , Metilação de DNA , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico
9.
Gac Med Mex ; 150(6): 563-9, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25375287

RESUMO

In recent years there has been an exponential growth of knowledge of the molecular basis of cancer. In particular, the creation of important initiatives for the elucidation of the genomes of several types of cancer has allowed for the first time the creation of catalogs for most mutational events in diverse tumors, which opens up significant opportunities for oncology and public health. This review provides an overview of the progress and possible directions in Mexico.


Assuntos
Bases de Dados Genéticas , Mutação , Neoplasias/genética , Humanos , México , Terapia de Alvo Molecular , Neoplasias/terapia
10.
J Cell Physiol ; 216(1): 189-97, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18264981

RESUMO

It is thought that glycolysis is the predominant energy pathway in cancer, particularly in solid and poorly vascularized tumors where hypoxic regions develop. To evaluate whether glycolysis does effectively predominate for ATP supply and to identify the underlying biochemical mechanisms, the glycolytic and oxidative phosphorylation (OxPhos) fluxes, ATP/ADP ratio, phosphorylation potential, and expression and activity of relevant energy metabolism enzymes were determined in multi-cellular tumor spheroids, as a model of human solid tumors. In HeLa and Hek293 young-spheroids, the OxPhos flux and cytochrome c oxidase protein content and activity were similar to those observed in monolayer cultured cells, whereas the glycolytic flux increased two- to fourfold; the contribution of OxPhos to ATP supply was 60%. In contrast, in old-spheroids, OxPhos, ATP content, ATP/ADP ratio, and phosphorylation potential diminished 50-70%, as well as the activity (88%) and content (3 times) of cytochrome c oxidase. Glycolysis and hexokinase increased significantly (both, 4 times); consequently glycolysis was the predominant pathway for ATP supply (80%). These changes were associated with an increase (3.3 times) in the HIF-1alpha content. After chronic exposure, both oxidative and glycolytic inhibitors blocked spheroid growth, although the glycolytic inhibitors, 2-deoxyglucose and gossypol (IC(50) of 15-17 nM), were more potent than the mitochondrial inhibitors, casiopeina II-gly, laherradurin, and rhodamine 123 (IC(50) > 100 nM). These results suggest that glycolysis and OxPhos might be considered as metabolic targets to diminish cellular proliferation in poorly vascularized, hypoxic solid tumors.


Assuntos
Metabolismo Energético , Neoplasias , Esferoides Celulares , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Desoxiglucose/metabolismo , Corantes Fluorescentes/metabolismo , Glicólise/fisiologia , Gossipol/metabolismo , Humanos , Lactonas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organometálicos/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Rodamina 123
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA