Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Reprod ; 21(2): e20230063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021495

RESUMO

Lipid metabolism is essential for ensuring oocyte maturation and embryo development. ß-Oxidized fatty acids (FA) are a potent source of energy for cells, particularly for bovine somatic follicular cells. Superstimulatory protocols using follicle stimulating hormone (FSH) or FSH combined with equine chorionic gonadotropin (eCG) are capable of stimulating the follicular microenvironment and drive the expression of biomarker genes associated with lipid metabolism in the cumulus-oocyte complex (COC) for better embryo development. In this study, we assesed the effects of FSH and FSH/eCG protocols on the expression of genes related to lipid metabolism in bovine granulosa cells (GCs). Further, we measured triglyceride levels in follicular fluid (FF) obtained from both superstimulatd and non-superstimulated cows (synchronized cows). In summary, superstimulation with gonadotropins maintained the TG levels in bovine FF and ensured GCs mRNA abundance of ACSL1, ACSL3, ACSL6, SCD, ELOVL5, ELOVL6, FASN, FADS2, and SREBP1. We, however, found the abundance of CPTIB mRNA to be lower in GCs obtained from cows subjected to FSH/eCG protocols than synchronized cows. In conclusion, the findings of this study showed that ovarian superstimulation around the preovulatory phase has a mild impact on the lipid metabolism in GCs.

2.
J Gerontol A Biol Sci Med Sci ; 74(6): 751-759, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29762647

RESUMO

Carcinogenesis is frequently linked to genetic background, however, exposure to environmental risk factors has gained attention as the etiologic agent for several types of cancer, including prostate. The intrauterine microenvironment has been described as a preponderant factor for offspring health; and maternal exposure to insult has been linked to chronic disease in older offspring. Using a model of maternal exposure to low-protein diet (LPD; 6% protein), we demonstrated that impairment of offspring rat prostatic growth on postnatal day (PND) 21 was associated with prostate carcinogenesis in older offspring (PND 540). One explanation is that maternal LPD consumption exposed offspring to an estrogenic intrauterine microenvironment, which potentially sensitized prostate cells early during glandular morphogenesis, increasing cellular response to estrogen in older rats. The onset of accelerated prostatic growth, observed on PND 21, associated with an unbalanced estrogen/testosterone ratio and increased circulating IGF-1 in older offspring appears to contribute to the development of prostate carcinoma in groups on gestational low protein and gestational and lactational low protein diets (33 and 50%, respectively). Our study strongly indicated maternal exposure to LPD as a potential risk factor for induction of slow-growing prostate carcinogenesis in rat offspring later in life.


Assuntos
Carcinogênese , Dieta com Restrição de Proteínas , Próstata/crescimento & desenvolvimento , Neoplasias da Próstata/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Feminino , Hormônios/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley
3.
Artigo em Inglês | MEDLINE | ID: mdl-19001480

RESUMO

This study was designed to determine whether N-acetylcysteine (NAC, C(5)H(9)-NO(3)S), a compound from Allium species may be used as a complementary therapeutic agent, to inhibit high-sucrose induced-obesity and its effects on glucose tolerance, in vivo low-density lipoprotein (LDL)-oxidation and serum oxidative stress in rats. Initially, 24 male Wistar rats were divided into two groups: controls receiving standard chow (C, n = 6) and those receiving high-sucrose diet (HS, n = 18). After 22 days, (HS) group was divided into three groups (n = 6/group); (HS-HS) continued to eat high-sucrose diet and water; (HS-N) continued to eat high-sucrose diet and received 2 mg l(-1)-NAC in its drinking water; (HS-CN) changing high-sucrose to standard chow and receiving 2 mg l(-1)-NAC in its drinking water. After 22 days of the HS-group division (44 days of experimental period) body weight, body mass index and surface area were enhanced in HS-HS rats (P < .001). HS-HS rats had glucose intolerance, increased serum triacylglycerol (TG), very low-density lipoprotein (VLDL), oxidized-LDL (ox-LDL) and lipid-hydroperoxide (LH) than the others (P < .01). NAC in HS-N and HS-CN rats reduced the obesity markers, feed efficiency, LH and ox-LDL, as well normalized glucose response, TG and VLDL (P < .01) in these groups compared with HS-HS. Total antioxidant substances, GSH/GSSG ratio and glutathione-reductase, were higher in HS-N than in HS-HS (P < .01). In conclusion, NAC improved high-sucrose diet-induced obesity and its effects on glucose tolerance, lipid profile, in vivo LDL-oxidation and serum oxidative stress, enhancing antioxidant defences. The application of this agent may be feasible and beneficial for high-sucrose diet-induced obesity, which certainly would bring new insights on obesity-related adverse effects control.

4.
Pharmacol Res ; 59(1): 74-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996201

RESUMO

To study the effects of N-acetylcysteine (NAC, C(5)H(9)-NO(3)S) on high-sucrose diet-induced obesity and its effects on energy metabolism and cardiac oxidative stress, male Wistar 24 rats were divided into four groups (n=6): (C) given standard chow and water; (N) receiving standard chow and 2g/l N-acetylcysteine in its drinking water; (HS) given standard chow and 30% sucrose in its drinking water, and (HS-N) receiving standard chow, 30% sucrose and N-acetylcysteine in its drinking water. After 30 days of the treatment, obesity was evidenced in HS rats from enhanced body weight, respiratory quotient, hypertriglyceridemia. As well depressed resting metabolic rate, and oxygen consumption per surface area. HS rats had triacylglycerol accumulation, oxidative stress and metabolic shifting in cardiac tissue. NAC enhanced fat oxidation and energy expenditure, normalizing these adverse effects, comparing HS-N and HS rats. The beta-hydroxyacyl coenzymne-A dehydrogenase activity was higher in HS-N animals, indicating higher heart fatty acid degradation than in HS. NAC normalized myocardial glycogen and lactate dehydrogenase activity, comparing HS-N and HS rats, but had no effects on calorimetric and biochemical parameters in standard-fed rats, comparing N and C groups. In conclusion, N-acetylcysteine offers promising therapeutic value in prevention of high-sucrose induced-obesity and its effect on cardiac tissue. N-acetylcysteine reduced the oxidative stress and prevented the metabolic shifting in cardiac tissue, enhancing fatty acid oxidation and reducing anaerobic metabolism in high-sucrose-fed conditions. The application of this agent in food system via exogenous addition may be feasible and beneficial for antioxidant protection and energy metabolism in cardiac tissue.


Assuntos
Acetilcisteína/farmacologia , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Masculino , Miocárdio/metabolismo , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Sacarose/administração & dosagem , Triglicerídeos/metabolismo
5.
Int J Cardiol ; 124(1): 92-9, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17383755

RESUMO

BACKGROUND: Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects. MATERIALS AND METHODS: Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol. RESULTS: FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate dehydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects. CONCLUSIONS: Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue.


Assuntos
Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Miocárdio/metabolismo , Obesidade/metabolismo , Análise de Variância , Animais , Índice de Massa Corporal , Metabolismo Energético/fisiologia , Teste de Tolerância a Glucose , Índice Glicêmico , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
6.
Food Chem Toxicol ; 42(2): 313-19, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14667476

RESUMO

The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.


Assuntos
Dieta , Aromatizantes/farmacologia , Glucose/metabolismo , Fígado/metabolismo , Glutamato de Sódio/farmacologia , Animais , Animais Recém-Nascidos , Feminino , Aromatizantes/administração & dosagem , Insulina/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Glutamato de Sódio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA