Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 165: 112132, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33607454

RESUMO

Coastal habitats worldwide, including sandy beaches, are becoming increasingly exposed to Artificial Light at Night (ALAN). Despite the spread of this global stressor, research assessing ALAN potential impacts remain scarce, particularly at the molecular level. This study addressed this gap by assessing the influence of ALAN on the physiological condition of the sandy beach insect Phalerisida maculata Kulzer (Coleoptera, Tenebrionidae). RNA:DNA ratios were used here as a proxy of the insect's nutritional condition in laboratory trials that lasted 20 d. Insects were exposed to two representative ALAN conditions (either 60 or 120 lx) and compared with those maintained in a natural daylight/night cycle (0 lx at nigth; control). After the trial, organisms from each treatment were frozen in liquid nitrogen and standard protocols were followed to estimate RNA, DNA and RNA:DNA ratios. Estimates of RNA:DNA ratios from insects maintained in control conditions were significantly higher (P < 0.05) than those from insects exposed to ALAN. The reduced nutritional condition of insects exposed to light pollution is explained by the lower in situ biosynthetic capacity in these organisms resulting from a reduction in their feeding. ALAN likely altered P. maculata normal locomotor activity, which takes place primarily at night, forcing the insects to remain buried in the sand for extended periods of time. As ALAN continues to spread along coastlines worldwide, there is a likelihood of growing impacts on these and other species living on sandy beaches and other coastal habitats.


Assuntos
Ecossistema , RNA , Animais , DNA , Poluição Ambiental , Insetos , Luz
2.
Environ Pollut ; 242(Pt A): 156-163, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29980033

RESUMO

As a result of human activities, climate forecasts predict changes in the oceans pCO2 and salinity levels with unknown impacts on marine organisms. As a consequence, an increasing number of studies have begun to address the individual influence of pCO2 and salinity but much remains to be done to understand their combined effects on the physiology and ecology of marine species. Our study addressed this knowledge gap by measuring the influence of current and predicted levels of pCO2 (380 and 1200 ppm, respectively) and salinity (20, 25 and 30 psµ) on the energetic physiology of juvenile mussels (Mytilus chilensis) from the south-eastern Pacific region. Our results indicate that a reduced salinity caused a significant reduction in clearance rate, absorption efficiency and scope for growth of this species. Meanwhile, an increase in pCO2 levels caused a reduction in excretion rates and interacted significantly with salinity in the rate of oxygen uptake measured in the mussel. These results suggest that potential changes in salinity might have a direct role on the physiology of M. chilensis. The effect of pCO2, although less prevalent among the variables measured here, did interact with salinity and is also likely to alter the physiology of this species. Given the ecological and economic importance of M. chilensis, we call for further studies exploring the influence of pCO2 across a wider range of salinities.


Assuntos
Dióxido de Carbono/análise , Mytilus/fisiologia , Salinidade , Água do Mar/química , Animais , Oceanos e Mares , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA