Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Behav ; 284: 114649, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069113

RESUMO

Puberty is a period of brain organization impacting the expression of social and sexual behaviors. Here, we assessed the effects of an acute pubertal stressor (immune challenge) on the expression of juvenile play (short-term) and sexual partner preference (long-term) in male rats. Juvenile play was assessed over ten trials at postnatal days (PND) (31-40) with age- and sex-matched conspecifics, and at PND35 males received a single injection of lipopolysaccharide (LPS, 1.5 mg/kg i.p.) or saline. Then, sexual partner preference was assessed at PND 60, 64, and 68, in a three-compartment chamber with a sexually receptive female and a male as potential partners simultaneously. The results confirmed that a single injection of LPS during puberty induced sickness signs indicative of an immune challenge. However, juvenile play was not affected by LPS treatment during the following days (PND36-40), nor was sexual behavior and partner preference for females in adulthood. These findings highlight that, while other studies have shown that LPS-induced immunological stress during puberty affects behavior and neuroendocrine responses, it does not affect juvenile play and sexual behavior in male rats. This suggests a remarkable resilience of these behavioral systems for adaptation to stressful experiences mediated by immune challenges during critical periods of development. These behaviors, however, might be affected by other types of stress.


Assuntos
Lipopolissacarídeos , Maturidade Sexual , Estresse Psicológico , Animais , Masculino , Lipopolissacarídeos/farmacologia , Feminino , Estresse Psicológico/fisiopatologia , Ratos , Maturidade Sexual/fisiologia , Jogos e Brinquedos/psicologia , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Ratos Wistar , Fatores Etários , Animais Recém-Nascidos , Preferência de Acasalamento Animal/efeitos dos fármacos , Preferência de Acasalamento Animal/fisiologia
2.
Psychoneuroendocrinology ; 163: 106988, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342055

RESUMO

Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats. In the present experiment, three groups of neonatal PD1 males (N = 12/group) were either gonadectomized (GDX), sham-GDX, or left intact and evaluated for social preferences and sexual behaviors as adults. We then examined whether the effects of GDX could be reversed by conditioning the males via cohabitation with receptive females under the effects of the D2 agonist quinpirole (QNP) or saline, along with the size of some brain regions, such as the sexually dimorphic nucleus of the preoptic area (SDN-POA), suprachiasmatic nucleus (SCN), posterior dorsal medial amygdala (MeApd) and ventromedial hypothalamus (VMH). Results indicated that neonatal GDX resulted in the elimination of male-typical sexual behavior, an increase in same-sex social preference, and a reduction of the area of the SDN-POA. However, GDX-QNP males that underwent exposure to receptive females in adulthood increased their social preference for females and recovered the size in the SDN-POA. Although neonatal GDX impairs sexual behavior and disrupts partner preference and brain dimorphism in adult male rats, Pavlovian conditioning under enhanced D2 agonism ameliorates the effects on social preference and restores brain dimorphism in the SDN-POA without testosterone.


Assuntos
Área Pré-Óptica , Caracteres Sexuais , Gravidez , Ratos , Animais , Masculino , Feminino , Área Pré-Óptica/metabolismo , Encéfalo , Quimpirol/farmacologia , Castração , Testosterona/farmacologia , Testosterona/metabolismo
3.
Physiol Behav ; 271: 114338, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619818

RESUMO

The role of diet in health is crucial, with calorie intake playing a significant role. Hypercaloric diets (HD) often lead to adipose tissue accumulation and increased risk of chronic diseases, including reproductive impairments. By contrast, restriction diets (RD) help with weight loss, improve cardiovascular function, and ameliorate reproduction. Herein we sought to investigate the impact of subchronic HD and RD on body weight, sexual behavior, serum testosterone and prostate histology in rats. Hence, 10-week old male rats gained sexual experience during five trials with ovariectomized, hormone-primed females. Then at postnatal week PW15 the males were organized in three groups, depending on the feeding they received until PW18: HD, RD and standard diet (SD). During PW19-22 they were tested for sexual behavior, and at PW23 were euthanized for prostate histology (hematoxylin & eosin stain) and hormone analysis. Results indicated that HD males increased their body weight (16-23%) compared to SD and RD. Furthermore, HD males showed 65% less testosterone than RD males. The prostate of HD males revealed histological alterations, including a notable increase in epithelium height and other abnormal features, while no changes were observed in the performance of sexual behavior between HD and RD, although HD appeared to facilitate ejaculation when compared to SD. The histological features of RD males were comparable to SD males. Accordingly, we argue that subchronic modifications in calorie intake can alter body weight (in HD), serum testosterone levels (HD and RD in opposite directions), and prostate histology (in HD), while having no immediate effect on male sexual behavior.

4.
Brain Sci ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190502

RESUMO

Parkinson's disease is currently a global public health challenge due to the rapid growth of aging populations. To understand its pathophysiology is necessary to study the functional correlation between the basal ganglia (BG) and the cerebellum, which are involved in motor control. Herein, we explored multiunit electrical activity (MUA) in the cerebellum of rats with induced Parkinsonism as a result of lesions following bilateral placement of electrodes and passing of current in the ventrolateral striatum (VLS). In one control group, the electrodes descended without electrical current, and another group was left intact in VLS. MUA was recorded in Sim B and Crus II lobes, and in the dentate nucleus (DN) during the execution of exploration behaviors (horizontal and vertical) and grooming. The lesioned and sham groups showed a decrease in MUA amplitude in the Crus II lobe compared to the intact group in all recorded behaviors. However, Sim B and DN did not express differences. Both electrical and physical insults to the VLS induced Parkinsonism, which results in less MUA in Crus II during the execution of motor behaviors. Thus, this type of Parkinsonism is associated with a decrease in the amplitude of Crus II.

5.
Animals (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552508

RESUMO

Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.

6.
Arch Sex Behav ; 50(8): 3901-3912, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34665381

RESUMO

Brain mechanisms of sexual attraction toward reproductive partners develop from a systematic interrelationship between biology (nature) and learning (nurture). However, the causes of attraction toward non-reproductive partners are poorly understood. Here, we explored the role of Pavlovian learning under dopaminergic agonism on the development of sexual preference and brain activation for young male rats. During conditioning, adult sexually naïve males received either Saline (Saline-Paired) or the D2-receptor agonist quinpirole (QNP-Paired) and cohabited in contingency, or out of contingency (QNP-Unpaired) during 24 h with an almond-scented prepubertal juvenile male (PD25). Conditioning occurred every 4 days for three trials. Social and sexual responses were assessed four days after the last conditioning trial in a drug-free test, and males chose freely between a scented young male (PD37) and a novel receptive female. Four days later, males were exposed to the conditioned odor only and brain Fos-IR and serum testosterone were analyzed. Saline-Paired and QNP-Unpaired males displayed more non-contact erections (NCEs) and genital investigations for females, whereas QNP-Paired males expressed more NCEs and genital investigations for young males. In the QNP-Paired group, exposure to the young male-paired odor evoked more Fos-IR in limbic, hypothalamic and cortical areas, but no differences in serum testosterone were observed. Cohabitation with juvenile males during enhanced D2 agonism results in atypical appetitive sexual responses and a higher pattern of brain response for the young male-paired odor, with no changes in serum testosterone. We discuss the potential implications for the development of pedophilic disorder and perhaps other paraphilias.


Assuntos
Agonistas de Dopamina , Comportamento Sexual Animal , Animais , Agonistas de Dopamina/farmacologia , Feminino , Humanos , Masculino , Odorantes , Quimpirol , Ratos , Receptores de Dopamina D2
7.
Epilepsy Behav ; 102: 106676, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756620

RESUMO

Previous research in female rats showed that induction of status epilepticus (SE) during infancy impairs proceptive sexual behavior at the long run in adulthood but temporarily, since full proceptivity is recovered after four mating trials. In male rats, such equivalent effects have not been explored yet. Thus, SE was experimentally induced by injecting lithium chloride (3 mEq/kg, i.p.) in thirteen-day-old (P13) male pups and then, on P14, pilocarpine hydrochloride (100 mg/kg, s.c.). Controls received the same volume of saline. For Experiment 1, at P90, we analyzed c-Fos immunoreactivity (c-Fos-IR) as a measure of unconditioned brain activity after exposing them to sexually receptive females, but without physical contact. For Experiment 2, a different group of males was tested for locomotor activity, and their sexual behavior was assessed during five trials. Then, serum testosterone and corticosterone levels were measured. Our results showed that a lower proportion of SE males performed mounts, intromissions, and ejaculations, and repeated training did not improve their behavior. The levels of testosterone in SE males were reduced, but corticosterone, c-Fos-IR, and locomotion were similar to controls. These results suggest that SE during infancy impairs adult sexual behavior by reducing testosterone.


Assuntos
Encéfalo/metabolismo , Comportamento Sexual Animal/fisiologia , Estado Epiléptico/sangue , Estado Epiléptico/psicologia , Testosterona/sangue , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Corticosterona/sangue , Feminino , Masculino , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Comportamento Sexual Animal/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente
8.
Behav Brain Res ; 374: 112117, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31362012

RESUMO

According to the organizational-activational hypothesis, testosterone or its metabolite estradiol, can organize the brain in a male direction (permanently or for long periods) if exposure occurs during a critical (sensitive) time of brain development like the prenatal period. Male rodents with insufficient levels of testosterone during such critical period would irreversibly fail to display sexual partner preference for receptive females in adulthood. However, exposure to testosterone during puberty is believed to function as a second critical period for organization of brain and behavior. Thus, in the present study we explored the effects of neonatal gonadectomy at postnatal day 1 (GNX) on the partner preference of adult males and the size of some sexually dimorphic regions in the brain like the SDN-MPOA, SCN, MeApd and VMH; and challenged its irreversibility by providing exogenous testosterone during puberty. Our results indicated that neonatal GNX impaired partner preference for females and reduced the size of SDN-MPOA, MeApd and VMH, but not SCN. GNX males restored with testosterone in PD30-PD59 (GNX + T) expressed partner preference for sexually receptive females and increased the size of SDN-MPOA and VMH, but not MeApd in adulthood. We conclude that neonatal castration and the lack of testosterone during the first month of life alters sexual behavior and brain dimorphism in adult male rats, but pubertal testosterone reverses the effects on behavior and brain dimorphism to some extent.


Assuntos
Castração/efeitos adversos , Casamento/psicologia , Testosterona/farmacologia , Fatores Etários , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Masculino , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Wistar , Comportamento Sexual Animal/efeitos dos fármacos , Maturidade Sexual , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos
9.
Neurosci Lett ; 687: 241-247, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30287305

RESUMO

The cerebellum is a structure of the central nervous system which has been previously studied with different techniques and animal models and even humans, so it is associated with multiple functions such as cognition, memory, emotional processing, balance, control of movement, among others. Its relationship with sensory systems has already been explored, however, the role it plays in olfactory processing in the cerebellum is unclear. Several hypotheses have been proposed from work done in humans and animal models with neuroimaging and immunohistochemical techniques. Everything seems to indicate that the cerebellar function is of vital importance for the olfactory perception, being able to be controlling not only the olfactory aspect, but also the olfactory processing. In this study we analyzed the multiunit activity in the granular layer of the cerebellar vermis during olfactory stimulation: a session being sexually naive and during four sessions of sexual behavior learning. The amplitude was compared between male naive and sexual experts, as well as between olfactory stimuli. The amplitude of the sexually experienced rats showed the highest values compared to naive ones. Odor of receptive female causes the greatest amplitudes, however, in the control group the amplitude increased when they were sexually experts. The motor, sensory and associative learning generated by the acquisition of sexual experience modifies the activation pattern in the cerebellum by presenting neutral odors or associated with a reward.


Assuntos
Córtex Cerebelar/fisiologia , Aprendizagem/fisiologia , Percepção Olfatória/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Sexual/fisiologia , Animais , Sinais (Psicologia) , Masculino , Memória/fisiologia , Condutos Olfatórios/fisiologia , Ratos Wistar , Olfato/fisiologia
10.
Neurobiol Learn Mem ; 146: 31-36, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29104177

RESUMO

The cerebellum is a complex structure mainly recognized for its participation in motor activity and balance, and less understood for its role in olfactory processing. Herein, we assessed Fos immunoreactivity (Fos-IR) in the cerebellar vermis following exposure to different odors during sexual training in male rats. Males were allowed to copulate for either one, three or five sessions. One day after the corresponding session they were exposed during 60 min to woodshaving that was either: clean (Control), sprayed with almond scent (Alm) or from cages of sexually receptive females (RF). The vermis of the cerebellum was removed, cut in sagittal sections and analyzed for Fos-IR to infer activation. Our results showed that the cerebellum responded with more Fos-IR in the Alm and RF groups as compared to Control. More copulatory sessions resulted in more odor-induced Fos-IR, especially in the RF group. Accordingly, we discuss possible mechanisms on how the cerebellum mediates processing of both unconditioned and conditioned odors, and how sexual experience accelerates such process.


Assuntos
Vermis Cerebelar/fisiologia , Aprendizagem/fisiologia , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Vermis Cerebelar/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Ovariectomia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA