Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(21): 30902-30913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622416

RESUMO

Among the compounds present in necro-leachate, a liquid released during the process of decomposition of the human body, are the biogenic amines cadaverine and putrescine. Although some studies on necro-leachate have indicated a potential ecotoxicological and public health risk associated with it, the research on this type of contamination is still rather limited. This study presents information about the phytotoxic and cytogenotoxic potential of cadaverine and putrescine, evaluated separately and within a mixture. Phytotoxicity was evaluated through a germination test, the initial growth of seedlings with Lactuca sativa, and cytogenotoxicity through chromosomal aberration and micronucleus tests with Allium cepa. The L. sativa results showed a phytotoxic effect for the evaluated amines, by reducing root (> 90%) and hypocotyl (> 80%) elongation. The co-exposure of cadaverine and putrescine potentiated cytogenotoxic activity by aneugenic action in the meristematic cells of A. cepa. From this result, it is possible to infer the eco-toxicogenic potential of cadaverine and putrescine. This study not only highlights the importance of the phytotoxic and cytogenotoxic effects of these amines but also emphasizes the urgent need for further investigation into contamination originating from cemetery environments. By evaluating the risks associated with necro-leachate, this research is aimed at informing global efforts to protect ecological and public health.


Assuntos
Aminas Biogênicas , Cadaverina , Putrescina , Aminas Biogênicas/toxicidade , Lactuca/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Germinação/efeitos dos fármacos
2.
Sci Total Environ ; 919: 170883, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354810

RESUMO

The implementation of novel wastewater treatment technologies, including Advanced Oxidation Processes (AOPs) such as ozonation and ultraviolet radiation (UV) combined with hydrogen peroxide (H2O2), can be a promising strategy for enhancing the quality of these effluents. However, during effluent oxidation AOPs may produce toxic compounds that can compromise the water reuse and the receiving water body. Given this possibility, the aim of this study was to evaluate the genotoxic potential of secondary effluents from two different Wastewater Treatment Plants (WWTP) that were subjected to ozonation or UV/H2O2 for periods of 20 (T1) and 40 (T2) minutes. The genotoxic potential was carried out with the Comet assay (for clastogenic damage) and the Micronucleus assay (for clastogenic and aneugenic damage) in HepG2/C3A cell culture (metabolizing cell line). The results of the comet assay revealed a significant increase in tail intensity in the Municipal WWTP (dry period) effluents treated with UV/H2O2 (T1 and T2). MN occurrence was noted across all treatments in both Pilot and Municipal WWTP (dry period) effluents, whereas nuclear buds (NBs) were noted for all Pilot WWTP treatments and UV/H2O2 treatments of Municipal WWTP (dry period). Moreover, the UV/H2O2 (T1) treatment of Municipal WWTP (dry period) exhibited a noteworthy incidence of multiple alterations per cell (MN + NBs). These findings imply that UV/H2O2 treatment demonstrates higher genotoxic potential compared to ozonation. Furthermore, seasonal variations can have an impact on the genotoxicity of the samples. Results of the study emphasize the importance of conducting genotoxicological tests using human cell cultures, such as HepG2/C3A, to assess the final effluent quality from WWTP before its discharge or reuse. This precaution is essential to safeguard the integrity of the receiving water body and, by extension, the biotic components it contains.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Peróxido de Hidrogênio , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Oxirredução , Água , Dano ao DNA , Purificação da Água/métodos
3.
Environ Monit Assess ; 195(12): 1494, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982899

RESUMO

Necro-leachate, a liquid released during cadaveric decomposition, is considered the main culprit for impacts on cemetery environments. The biogenic amines cadaverine and putrescine make up part of the composition of necro-leachate and have a certain toxicity to different organisms. Springtails are among the most used bioindicators to assess the impacts of soil contaminants. As there are no data on the acute and chronic toxicity of springtails exposed to cadaverine and putrescine, the objective of this study was to evaluate the toxic potential of both amines, under the behavioral effect of avoidance and reproduction in the species Folsomia candida. Springtails were exposed to soils contaminated with different concentrations of cadaverine and putrescine, and different mixtures of these amines. To evaluate the avoidance and reproduction test, the individuals were exposed for periods of 48 h and 28 days, respectively. The results obtained in the avoidance test showed that springtails exhibited a preference for the treated soil in both isolated and mixed treatments. The chronic evaluation assays showed that the reproduction was affected, particularly in the treatments with combined amines, resulting in a reduction in the total number of juveniles. From the results, it is possible to infer that the methods applied in this research have provided information that will contribute to a better understanding of the toxicity of putrefactive biogenic amines, since there exist few ecotoxicological studies carried out with these amines, and especially with those from cemetery environments.


Assuntos
Artrópodes , Putrescina , Humanos , Animais , Cadaverina , Monitoramento Ambiental , Cadáver , Aminas Biogênicas/toxicidade , Solo
4.
Environ Sci Pollut Res Int ; 29(26): 40029-40040, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35118590

RESUMO

Water Treatment Plants (WTP) and Sewage Treatment Plants (STP) generate residues known as sludge (WS and SS, respectively). SS and WS present some positive characteristics for reuse in agriculture. The aim of the present study was to evaluate, using the Allium cepa test, the effectiveness of the bioremediation process in the detoxification of SS and WS sludges. In this study, the phytotoxic, cytotoxic, genotoxic, and mutagenic potentials of pure sludge samples (WS and SS) were evaluated, as well as the association of these two sludges with soil (S), before and after the bioremediation process. In the T0 period (before undergoing bioremediation), the SS, SS + S, and SS + WS samples totally inhibited the germination of A. cepa, proving the high phytotoxic potential of these samples. For the T1 period (after 6 months of bioremediation), phytotoxicity was observed for the SS, SS + S, SS + WS, and SS + WS + S samples, but there was not a complete inhibition of germination and radicles growth, allowing the evaluation of the other parameters (cytogenotoxic and mutagenic potential). No cytotoxicity was observed for any sample, both in T0 and T1. As for the genotoxicity parameter, a significant result was observed for the pure WS sample in T0 and for all samples in T1, when compared to NC. The genotoxic alteration most found in meristematic cells exposed to treatments was of binucleated cells. Mutagenic potential was also observed for samples of WS and WS + S in T0. From this study, we can conclude that, after six months of bioremediation, despite the SS phytotoxicity being reduced, all samples were genotoxic to the A. cepa organism test.


Assuntos
Esgotos , Solo , Biodegradação Ambiental , Dano ao DNA , Mutagênicos/toxicidade , Cebolas , Esgotos/química , Solo/química
5.
Chemosphere ; 287(Pt 3): 132290, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562707

RESUMO

Developing novel renewable (and preferably biodegradable) materials has become recurrent due to the growing concerns with environmental impacts of high volumes of plastic waste produced from oil-based sources over the past decades. This study aimed at developing bioplastics from a mixture of starch and xylan in variable ratios, and the combined effect of α-cellulose and holocellulose extracted from sugarcane bagasse added to the process. The disintegration of bioplastics was evaluated in both soil and composting. The ecotoxicity analyses with Saccharomyces cerevisiae, Bacillus subtilis and seeds of Cucumis sativus were conducted after disintegration. All formulations based on 5% (w/v) of total polysaccharides were dried at 30 °C and resulted in homogeneous and non-brittle bioplastics. The composting results showed that all bioplastic formulations disintegrated in 3 days, whereas the 25/75% (xylan/starch, w/w) formulation vanished in soil within 13 days. The ecotoxicity data showed no inhibition of microbial growth after biodegradation, yielding 100% of seed germination. Despite the positive influence of the bioplastic degradation on the root and hypocotyl growth, temporary inhibition of C. sativus tissues exposed to soil washing (10 days of disintegration) was observed. The study demonstrated that xylan/starch bioplastics result in non-ecotoxic biodegradable materials.


Assuntos
Compostagem , Amido , Biodegradação Ambiental , Plásticos/toxicidade , Xilanos
6.
Environ Sci Pollut Res Int ; 29(2): 1696-1711, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34689297

RESUMO

Cemetery leachate generated by the process of cadaveric decomposition is a significant contaminant of several matrices in the cemetery environment (soil, groundwater, and surface water). The biogenic amines cadaverine and putrescine stand out among the cemetery leachate contaminants, since they are potentially carcinogenic compounds. This review article presents a discussion of possible environmental impacts caused by the increase in deaths resulting from COVID-19 as its central theme. The study also aims to demonstrate the importance of considering, in this context, some climatic factors that can alter both the time of bodily decomposition and the longevity of the virus in the environment. Additionally, some evidence for the transmission of the virus to health professionals and family members after the patient's death and environmental contamination after the burial of the bodies will also be presented. Several sources were consulted, such as scientific electronic databases (NCBI), publications by government agencies (e.g., ARPEN, Brazil) and internationally recognized health and environmental agencies (e.g., WHO, OurWorldInData.org), as well as information published on reliable websites available for free (e.g., CNN) and scientific journals related to the topic. The data from this study sounds the alarm on the fact that an increase in the number of deaths from the complications of COVID-19 has generated serious environmental problems, resulting from Cemetery leachate.


Assuntos
COVID-19 , Meio Ambiente , Poluentes Ambientais/análise , Água Subterrânea , Cemitérios , Humanos , Pandemias , SARS-CoV-2
7.
Environ Sci Pollut Res Int ; 28(14): 18276-18283, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410013

RESUMO

Eutrophication is one of the environmental problems arising from the increase of essential nutrient concentrations, mainly phosphorus and nitrogen. In contrast to excess phosphorus, the depletion of phosphate rock deposits used for the production of fertilizers compromises the food supply. Therefore, the development of technologies that propose the recovery of the phosphorus contained in eutrophic environments for its later use for agricultural fertilization purposes is very important to ensure global food security. This work aimed to evaluate the toxic potential of the sawdust (biosorbent previously used for phosphorus adsorption) in order to enable its application in agriculture. For this, toxicity experiments with Lactuca sativa (lettuce) and Allium cepa (onion) seeds were performed. The phytotoxic potential was assessed by means of the seed germination index and physiological parameters such as radicle and hypocotyl growth. Cytotoxicity, genotoxicity, and mutagenicity tests were also performed on onion seeds. From statistical tests, it was possible to affirm that the sawdust did not promote inhibition of seed germination and radicle and hypocotyl growth. No genotoxicity, cytotoxicity and, mutagenicity were observed, which allowed to state that the sawdust is not toxic to the onion species, which reinforces the possibility of application of the biosorbent for soil fertilization purposes. Therefore, the use of sawdust for phosphorus biosorption with the subsequent agricultural application is promising and quite important from a global food security point of view.


Assuntos
Lactuca , Cebolas , Fertilizantes , Germinação , Fósforo , Solo
8.
Environ Sci Pollut Res Int ; 27(27): 34495-34502, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557033

RESUMO

Tannery sludge (TS) contains high levels of organic matter and chemical elements, mainly chromium (Cr). This can increase its toxicity, rendering it unsuitable for application to soil. However, composting has been proposed as an alternative method for detoxifying TS before its addition to soil. Thus, the aim of this study was to evaluate the phytotoxic and cytogenotoxic potential of untreated (TS) and composted (CTS) tannery sludge in solid and solubilized samples. Seed germination and root growth bioassays were performed with Lactuca sativa, while chromosomal aberrations were assessed using the Allium cepa bioassay. In solid samples, the L. sativa bioassay showed that TS adversely affected germination and root growth, while CTS had a negative affect only on root growth. In solubilized samples, only TS showed significant adverse effects on seed germination and root growth. In both solid and solubilized samples, TS and CTS showed cytotoxic, genotoxic, and mutagenic effects on A. cepa. Thus, results demonstrated that the composting of TS does not result in its complete detoxification. For this reason, TS and CTS cannot be recommended for agricultural use, since they may increase the risk of environmental contamination and crop damage.


Assuntos
Compostagem , Poluentes do Solo , Agricultura , Esgotos , Solo
9.
Chemosphere ; 256: 126985, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32445994

RESUMO

Biodegradable mulch films are an alternative to polyethylene films used in agriculture for weed control, improving crop productivity. This change could minimize the residue production and costs related to the final disposal. Nevertheless, the environmental safety of these biodegradable products is scarcely investigated. In this work, samples of poly(butylene adipate-co-terephthalate)-PBAT mulch films, with and without UV stabilizer additives, were prepared. Aqueous extracts of soil samples, where mulch films were disposed, were investigated using bioassays with Lactuca sativa, Allium cepa, and cell culture HepG2/C3A. As PBAT is expected to suffer photodegradation and biodegradation, soil samples mixed with films before and after these processes were evaluated. Soil aqueous extracts promoted root grown (mainly hypocotyl) of L. sativa, probably due to presence of nutrients. So, to evaluate toxicity potential, in this case it was necessary to use aqueous extract prepared with soil instead of ultrapure water as the control. After doing this analysis it was observed that no adverse impacts due to PBAT films occurred. No chromosomal abnormalities were observed in A. cepa bioassay for any of tested samples. The absence of genotoxic potential was confirmed by comet assay and micronucleus test using human hepatocarcinoma cell line HepG2/C3A. These results showed that the soil did not induce damage to the tested organisms, before and after degradation of PBAT films.


Assuntos
Biodegradação Ambiental , Lactuca/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Adipatos , Agricultura , Alcenos , Ecotoxicologia , Humanos , Lactuca/fisiologia , Cebolas/fisiologia , Ácidos Ftálicos , Poliésteres/química , Poluentes do Solo
10.
Chemosphere ; 254: 126716, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334246

RESUMO

Cyanobacteria are prokaryotes involved in the contamination of aquatic environments since they release toxins that are highly potent and dangerous for living organisms. Prokaryotes produce endo and exotoxins, among others. Exotoxins are highly toxic, while endotoxins have milder toxic effects. The present study evaluated the cytotoxicogenetic potency of both toxins studying them in different concentrations of cyanobacterial biomasses (1 µg/L, 1.5 µg/L, 2 µg/L), to assess the amount of exotoxin present in the cultured medium in which the cyanobacteria were grown. For this evaluation, we used an extract taken from the medium in a concentration of 10%. Our results showed that genotoxic and mutagenic changes in Allium cepa could be observed in all of the varying concentrations of biomass (endotoxin action) and also in the medium induced with exotoxin. Even at low concentrations, these toxins were highly effective at triggering changes in the DNA molecules of organisms exposed to them. This information is highly significant when considering environmental contamination caused by cyanobacteria blooms, since the results of this study show that these toxins may not only kill organisms when found in high concentrations, but also induce mutations when found in low concentrations. Since these mutations are expressed later on in the organisms, it is impossible to associate the observed effect with the event that induced the damage.


Assuntos
Cianobactérias/patogenicidade , Dano ao DNA , Endotoxinas/toxicidade , Exotoxinas/toxicidade , Biomassa , Microcistinas/toxicidade , Mutagênicos/toxicidade , Cebolas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA