Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 153, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564817

RESUMO

BACKGROUND: Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars. RESULTS: Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al(3+) specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1. CONCLUSIONS: High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.


Assuntos
Adaptação Biológica/genética , Alumínio/toxicidade , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/efeitos dos fármacos , Zea mays/genética , Cruzamento , Mapeamento Cromossômico , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genótipo , Fenótipo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
2.
Plant J ; 73(2): 276-88, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22989115

RESUMO

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.


Assuntos
Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Processamento Alternativo , Sequência de Bases , Variação Genética , Genoma de Planta , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Conformação Proteica , Sorghum/genética
3.
Funct Plant Biol ; 32(11): 1045-1055, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32689200

RESUMO

Aluminum (Al) toxicity induces changes in the expression of several genes, some of which are involved in plant responses to oxidative stress. Using mRNA differential display, we identified a maize Al-inducible cDNA encoding a glutathione S-transferase (GST). The gene was named GST27.2 owing to its homology to the maize gene GST27, which is known to be induced by xenobiotics. GST27.2 is present in the maize genome as a single copy and analysis of its expression pattern revealed that the gene is expressed mainly in the root tip. Expression was up-regulated in response to various Al and Cd concentrations in both Al-tolerant and Al-sensitive maize lines. Consistent with its role in plants, phylogenetic analysis of theta-type GSTs revealed that GST27.2 belongs to a group of proteins that respond to different stresses. Finally, structural analysis of the polypeptide chain indicates that the two amino acids that differ between GST27.2 and GST27 (E102K and P123L) could be responsible for alterations in activity and / or specificity. Together, these results suggest that GST27.2 may play an important part in plant defenses against Al toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA