Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001860

RESUMO

The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.

2.
Microorganisms ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257891

RESUMO

Furunculosis, caused by Aeromonas salmonicida, poses a significant threat to both salmonid and non-salmonid fish in diverse aquatic environments. This study explores the genomic intricacies of re-emergent A. salmonicida outbreaks in Atlantic salmon (Salmo salar). Previous clinical cases have exhibited pathological characteristics, such as periorbital hemorrhages and gastrointestinal abnormalities. Genomic sequencing of three Chilean isolates (ASA04, ASA05, and CIBA_5017) and 25 previously described genomes determined the pan-genome, phylogenomics, insertion sequences, and restriction-modification systems. Unique gene families have contributed to an improved understanding of the psychrophilic and mesophilic clades, while phylogenomic analysis has been used to identify mesophilic and psychrophilic strains, thereby further differentiating between typical and atypical psychrophilic isolates. Diverse insertion sequences and restriction-modification patterns have highlighted genomic structural differences, and virulence factor predictions can emphasize exotoxin disparities, especially between psychrophilic and mesophilic strains. Thus, a novel plasmid was characterized which emphasized the role of plasmids in virulence and antibiotic resistance. The analysis of antibiotic resistance factors revealed resistance against various drug classes in Chilean strains. Overall, this study elucidates the genomic dynamics of re-emergent A. salmonicida and provides novel insights into their virulence, antibiotic resistance, and population structure.

4.
Antonie Van Leeuwenhoek ; 114(9): 1323-1336, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34052985

RESUMO

Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.


Assuntos
Doenças dos Peixes , Mycobacterium , Oncorhynchus kisutch , Animais , Chile , Genômica , Humanos , Mycobacteriaceae , Mycobacterium/genética , Filogenia
5.
iScience ; 23(11): 101691, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33163944

RESUMO

The transcription factor EB (TFEB) has emerged as a master regulator of lysosomal biogenesis, exocytosis, and autophagy, promoting the clearance of substrates stored in cells. c-Abl is a tyrosine kinase that participates in cellular signaling in physiological and pathophysiological conditions. In this study, we explored the connection between c-Abl and TFEB. Here, we show that under pharmacological and genetic c-Abl inhibition, TFEB translocates into the nucleus promoting the expression of its target genes independently of its well-known regulator, mammalian target of rapamycin complex 1. Active c-Abl induces TFEB phosphorylation on tyrosine and the inhibition of this kinase promotes lysosomal biogenesis, autophagy, and exocytosis. c-Abl inhibition in Niemann-Pick type C (NPC) models, a neurodegenerative disease characterized by cholesterol accumulation in lysosomes, promotes a cholesterol-lowering effect in a TFEB-dependent manner. Thus, c-Abl is a TFEB regulator that mediates its tyrosine phosphorylation, and the inhibition of c-Abl activates TFEB promoting cholesterol clearance in NPC models.

6.
Cell Death Differ ; 27(7): 2294, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32047275

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Cell Death Differ ; 27(4): 1169-1185, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31591470

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative condition, characterized by motor impairment due to the progressive degeneration of dopaminergic neurons in the substantia nigra and depletion of dopamine release in the striatum. Accumulating evidence suggest that degeneration of axons is an early event in the disease, involving destruction programs that are independent of the survival of the cell soma. Necroptosis, a programmed cell death process, is emerging as a mediator of neuronal loss in models of neurodegenerative diseases. Here, we demonstrate activation of necroptosis in postmortem brain tissue from PD patients and in a toxin-based mouse model of the disease. Inhibition of key components of the necroptotic pathway resulted in a significant delay of 6-hydroxydopamine-dependent axonal degeneration of dopaminergic and cortical neurons in vitro. Genetic ablation of necroptosis mediators MLKL and RIPK3, as well as pharmacological inhibition of RIPK1 in preclinical models of PD, decreased dopaminergic neuron degeneration, improving motor performance. Together, these findings suggest that axonal degeneration in PD is mediated by the necroptosis machinery, a process here referred to as necroaxoptosis, a druggable pathway to target dopaminergic neuronal loss.


Assuntos
Axônios/patologia , Necroptose , Degeneração Neural/patologia , Doença de Parkinson/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Neuritos/patologia , Oxidopamina , Doença de Parkinson/fisiopatologia , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia
8.
Biol Cell ; 111(6): 161-168, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30860281

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta. At the molecular level, Parkinson's disease share common molecular signatures with most neurodegenerative diseases including the accumulation of misfolded proteins in the brain. Alteration in the buffering capacity of the proteostasis network during aging is proposed as one of the triggering steps leading to abnormal protein aggregation in this disease, highlighting disturbances in the function of the endoplasmic reticulum (ER). The ER is the main subcellular compartment involved in protein folding and quality control. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which aims restoring proteostasis through the induction of adaptive programs or the activation of cell death pathways when damage is chronic and cannot be repaired. Here, we overview most evidence linking ER stress to Parkinson's disease. Strategies to alleviate ER stress by targeting specific components of the UPR using small molecules and gene therapy are highlighted.


Assuntos
Doença de Parkinson/terapia , Resposta a Proteínas não Dobradas , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Terapia Genética , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais
9.
J Fish Dis ; 42(5): 721-737, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851000

RESUMO

Piscirickettsia salmonisis the causative bacterial pathogen of piscirickettsiosis, a salmonid disease that causes notable mortalities in the worldwide aquaculture industry. Published research describes the phenotypic traits, virulence factors, pathogenicity and antibiotic-resistance potential for various P. salmonisstrains. However, evolutionary and genetic information is scarce for P. salmonis. The present study used multilocus sequence typing (MLST) to gain insight into the population structure and evolution of P. salmonis. Forty-two Chilean P. salmonisisolates, as well as the type strain LF-89T , were recovered from diseased Salmo salar, Oncorhynchus kisutchand Oncorhynchus mykissfrom two Chilean Regions. MLST assessed the loci sequences of dnaK, efp, fumC, glyA, murG, rpoD and trpB. Bioinformatics analyses established the genetic diversity among P. salmonis isolates (H = 0.5810). A total of 23 sequence types (ST) were identified, 53.48% of which were represented by ST1, ST5 and ST2. Population structure analysis through polymorphism patterns showed few polymorphic sites (218 nucleotides from 4,010 bp), while dN/dS ratio analysis indicated purifying selection for dnaK, epf, fumC, murG, and rpoD but neutral selection for the trpB loci. The standardized index of association indicated strong linkage disequilibrium, suggesting clonal population structure. However, recombination events were detected in a group of seven isolates. Findings included genogroups homologous to the LF-89T and EM-90 strains, as well as a seven-isolate hybrid genogroup recovered from both assessed regions (three O. mykiss and four S. salar isolates). The presented MLST scheme has comparative potential, with promising applications in studying distinct P. salmonis isolates (e.g., from different hosts, farms, geographical areas) and in understanding the epidemiology of this pathogen.


Assuntos
Doenças dos Peixes/microbiologia , Variação Genética , Genótipo , Tipagem de Sequências Multilocus/métodos , Piscirickettsia/genética , Infecções por Piscirickettsiaceae/veterinária , Salmonidae , Animais , Aquicultura , Sequência de Bases , Chile , Oncorhynchus kisutch , Oncorhynchus mykiss , Filogenia , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar , Alinhamento de Sequência/veterinária
10.
J Alzheimers Dis ; 66(3): 1145-1163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412496

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite advances in our understanding of the molecular milieu driving AD pathophysiology, no effective therapy is currently available. Moreover, various clinical trials have continued to fail, suggesting that our approach to AD must be revised. Accordingly, the development and validation of new models are highly desirable. Over the last decade, we have been working with Octodon degus (degu), a Chilean rodent, which spontaneously develops AD-like neuropathology, including increased amyloid-ß (Aß) aggregates, tau hyperphosphorylation, and postsynaptic dysfunction. However, for proper validation of degu as an AD model, the aggregation properties of its Aß peptide must be analyzed. Thus, in this study, we examined the capacity of the degu Aß peptide to aggregate in vitro. Then, we analyzed the age-dependent variation in soluble Aß levels in the hippocampus and cortex of third- to fifth-generation captive-born degu. We also assessed the appearance and spatial distribution of amyloid plaques in O. degus and compared them with the plaques in two AD transgenic mouse models. In agreement with our previous studies, degu Aß was able to aggregate, forming fibrillar species in vitro. Furthermore, amyloid plaques appeared in the anterior brain structures of O. degus at approximately 32 months of age and in the whole brain at 56 months, along with concomitant increases in Aß levels and the Aß42/Aß40 ratio, indicating that O. degus spontaneously develops AD-like pathology earlier than other spontaneous models. Based on these results, we can confirm that O. degus constitutes a valuable model to improve AD research.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/patologia , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Octodon , Placa Amiloide/metabolismo , Agregados Proteicos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA