Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(7): e1009139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314430

RESUMO

Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.


Assuntos
Encéfalo/fisiologia , Estado de Consciência , Encéfalo/diagnóstico por imagem , Biologia Computacional , Estado de Consciência/classificação , Estado de Consciência/fisiologia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Sono/fisiologia , Vigília/classificação , Vigília/fisiologia
2.
Brain Connect ; 10(2): 83-94, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195610

RESUMO

Recent evidence on resting-state functional magnetic resonance imaging (rs-fMRI) suggests that healthy human brains have a temporal organization represented in a widely complex time-delay structure. This structure seems to underlie brain communication flow, integration/propagation of brain activity, as well as information processing. Therefore, it is probably linked to the emergence of highly coordinated complex brain phenomena, such as consciousness. Nevertheless, possible changes in this structure during an altered state of consciousness remain poorly investigated. In this work, we hypothesized that due to a disruption in high-order functions and alterations of the brain communication flow, patients with disorders of consciousness (DOC) might exhibit changes in their time-delay structure of spontaneous brain activity. We explored this hypothesis by comparing the time-delay projections from fMRI resting-state data acquired in resting state from 48 patients with DOC and 27 healthy controls (HC) subjects. Results suggest that time-delay structure modifies for patients with DOC conditions when compared with HC. Specifically, the average value and the directionality of latency inside the midcingulate cortex (mCC) shift with the level of consciousness. In particular, positive values of latency inside the mCC relate to preserved states of consciousness, whereas negative values change proportionally with the level of consciousness in patients with DOC. These results suggest that the mCC may play a critical role as an integrator of brain activity in HC subjects, but this role vanishes in an altered state of consciousness.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos da Consciência/diagnóstico por imagem , Estado de Consciência/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Descanso , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA