Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1057349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465616

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Células Endoteliais , Volume Sistólico , Autofagia , Miócitos Cardíacos
2.
Biochem Pharmacol ; 203: 115183, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870482

RESUMO

Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.


Assuntos
Angiotensina I , Hipertensão , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Angiotensina I/uso terapêutico , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Imidazóis , Peptidil Dipeptidase A/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Sistema Renina-Angiotensina , Sulfonamidas , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA