Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. bras. ciênc. avic ; 17(3): 275-280, jul.-set. 2015. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1490180

RESUMO

Avian metapneumovirus (aMPV) is a negative-sense single-stranded RNA enveloped virus of the Metapneumovirus genus belonging to theParamyxoviridae family. This virus may cause significant economic losses to the poultry industry, despite vaccination, which is the main tool for controlling and preventing aMPV. The aim of this study was to evaluate the antiviral activity of extracts of four different native plants of the Brazilian Cerrado against aMPV. The antiviral activity against aMPV was determined by titration. This technique measures the ability of plant extract dilutions (25 to 2.5 µg mL-1) to inhibit the cytopathic effect (CPE) of the virus, expressed as inhibition percentage (IP). The maximum nontoxic concentration (MNTC) of the extracts used in antiviral assay was 25 µg mL-1for Aspidosperma tomentosumand Gaylussacia brasiliensis, and 2.5 µg mL-1for Arrabidaea chicaand Virola sebifera. Twelve different extracts derived from four plant species collected from the Brazilian Cerrado were screened for antiviral activity against aMPV. G. brasiliensis, A. chica,and V. sebifera extracts presented inhibition rates of 99% in the early viral replication stages, suggesting that these extracts act during the adsorption phase. On the other hand, A. tomentosum inhibited 99% virus replication after the virus entered the cell. The biomonitored fractioning of extracts active against aMPV may be a tool to identify the active compounds of plant extracts and to determine their precise mode of action.


Assuntos
Animais , Antivirais/análise , Metapneumovirus/classificação
2.
R. bras. Ci. avíc. ; 17(3): 275-280, jul.-set. 2015. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-17103

RESUMO

Avian metapneumovirus (aMPV) is a negative-sense single-stranded RNA enveloped virus of the Metapneumovirus genus belonging to theParamyxoviridae family. This virus may cause significant economic losses to the poultry industry, despite vaccination, which is the main tool for controlling and preventing aMPV. The aim of this study was to evaluate the antiviral activity of extracts of four different native plants of the Brazilian Cerrado against aMPV. The antiviral activity against aMPV was determined by titration. This technique measures the ability of plant extract dilutions (25 to 2.5 µg mL-1) to inhibit the cytopathic effect (CPE) of the virus, expressed as inhibition percentage (IP). The maximum nontoxic concentration (MNTC) of the extracts used in antiviral assay was 25 µg mL-1for Aspidosperma tomentosumand Gaylussacia brasiliensis, and 2.5 µg mL-1for Arrabidaea chicaand Virola sebifera. Twelve different extracts derived from four plant species collected from the Brazilian Cerrado were screened for antiviral activity against aMPV. G. brasiliensis, A. chica,and V. sebifera extracts presented inhibition rates of 99% in the early viral replication stages, suggesting that these extracts act during the adsorption phase. On the other hand, A. tomentosum inhibited 99% virus replication after the virus entered the cell. The biomonitored fractioning of extracts active against aMPV may be a tool to identify the active compounds of plant extracts and to determine their precise mode of action.(AU)


Assuntos
Animais , Metapneumovirus/classificação , Antivirais/análise
3.
Pharm Biol ; 50(10): 1269-75, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22873798

RESUMO

CONTEXT: Medicinal plants are well known for their use in traditional folk medicine as treatments for many diseases including infectious diseases. OBJECTIVE: Six Brazilian medicinal plant species were subjected to an antiviral screening bioassay to investigate and evaluate their biological activities against five viruses: bovine herpesvirus type 5 (BHV-5), avian metapneumovirus (aMPV), murine hepatitis virus type 3, porcine parvovirus and bovine respiratory syncytial virus. MATERIALS AND METHODS: The antiviral activity was determined by a titration technique that depends on the ability of plant extract dilutions (25 or 2.5 µg/mL) to inhibit the viral induced cytopathic effect and the extracts' inhibition percentage (IP). RESULTS: Two medicinal plant species showed potential antiviral activity. The Aniba rosaeodora Ducke (Lauraceae) extract had the best results, with 90% inhibition of viral growth at 2.5 µg/mL when the extract was added during the replication period of the aMPV infection cycle. The Maytenus ilicifolia (Schrad.) Planch. (Celastraceae) extracts at a concentration of 2.5 µg/mL exhibited antiviral activity during the attachment phase of BHV-5 (IP = 100%). DISCUSSION AND CONCLUSION: The biomonitored fractionation of the active extracts from M. ilicifolia and A. rosaeodora could be a potential tool for identifying their active compounds and determining the exact mechanism of action.


Assuntos
Antivirais/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Doenças dos Animais/tratamento farmacológico , Doenças dos Animais/virologia , Animais , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Brasil , Bovinos , Relação Dose-Resposta a Droga , Herpesvirus Bovino 5/efeitos dos fármacos , Lauraceae/química , Maytenus/química , Medicina Tradicional , Metapneumovirus/efeitos dos fármacos , Camundongos , Extratos Vegetais/administração & dosagem , Suínos , Replicação Viral/efeitos dos fármacos
4.
J Biotechnol ; 155(2): 147-55, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21723338

RESUMO

RIVET (Recombination Based in vivo Expression Technology) is a powerful genetic tool originally conceived for the identification of genes induced in complex biological niches where conventional transcriptomics is difficult to use. With a broader application, genetic recombination-based technologies have also been used, in combination with regulatory proteins and specific transcriptional regulators, for the development of highly sensitive biosensor systems. RIVET systems generally comprise two modules: a promoter-trap cassette generating genomic transcriptional fusions to the tnpR gene encoding the Tn-γδ TnpR resolvase, and a reporter cassette carrying res-flanked selection markers that are excised upon expression of tnpR to produce an irreversible, inheritable phenotypic change. We report here the construction and validation of a new set of positive-selection RIVET systems that, upon induction of the promoter-trap module, generate the transcriptional activation of an antibiotic-resistant and a green-fluorescent phenotype. Two classes of promoter-trap tools were constructed to generate transcriptional fusions to tnpR: one based on the use of a narrow-host-range plasmid (pRIVET-I), integrative in several Gram-negative bacteria, and the other based on the use of a broad-host-range plasmid (pRIVET-R). The system was evaluated in the model soil bacterium Sinorhizobium meliloti, where a clear-cut phenotypic transition from Nm(R)-Gm(S)-GFP(-) to Nm(S)-Gm(R)-GFP(+) occurred upon expression of tnpR. A S. meliloti integrative RIVET library was constructed in pRIVET-I and, as expected, changes in the extracellular conditions (e.g., salt stress) triggered a significant increase in the appearance of Gm(R)-GFP(+) (excised) clones. The sacB-independent positive-selection RIVET systems here described provide suitable basic tools both for the construction of new recombination-based biosensors and for the search of bacterial markers induced when microorganisms colonize and invade complex environments and eukaryotic hosts.


Assuntos
Técnicas Biossensoriais/métodos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética/genética , Sinorhizobium meliloti/metabolismo , Ativação Transcricional/genética , Farmacorresistência Bacteriana/genética , Escherichia coli , Biblioteca Gênica , Proteínas de Fluorescência Verde , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Sinorhizobium meliloti/genética , Transposon Resolvases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA