Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 231(5): 1875-1889, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34053087

RESUMO

Adjustment to energy starvation is crucial to ensure growth and survival. In Arabidopsis thaliana (Arabidopsis), this process relies in part on the phosphorylation of the circadian clock regulator bZIP63 by SUCROSE non-fermenting RELATED KINASE1 (SnRK1), a key mediator of responses to low energy. We investigated the effects of mutations in bZIP63 on plant carbon (C) metabolism and growth. Results from phenotypic, transcriptomic and metabolomic analysis of bZIP63 mutants prompted us to investigate the starch accumulation pattern and the expression of genes involved in starch degradation and in the circadian oscillator. bZIP63 mutation impairs growth under light-dark cycles, but not under constant light. The reduced growth likely results from the accentuated C depletion towards the end of the night, which is caused by the accelerated starch degradation of bZIP63 mutants. The diel expression pattern of bZIP63 is dictated by both the circadian clock and energy levels, which could determine the changes in the circadian expression of clock and starch metabolic genes observed in bZIP63 mutants. We conclude that bZIP63 composes a regulatory interface between the metabolic and circadian control of starch breakdown to optimize C usage and plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas Serina-Treonina Quinases/metabolismo , Açúcares
2.
J Insect Sci ; 14: 2, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25373149

RESUMO

The genera Cochliomyia and Chrysomya contain both obligate and saprophagous flies, which allows the comparison of different feeding habits between closely related species. Among the different strategies for comparing these habits is the use of qPCR to investigate the expression levels of candidate genes involved in feeding behavior. To ensure an accurate measure of the levels of gene expression, it is necessary to normalize the amount of the target gene with the amount of a reference gene having a stable expression across the compared species. Since there is no universal gene that can be used as a reference in functional studies, candidate genes for qPCR data normalization were selected and validated in three Calliphoridae (Diptera) species, Cochliomyia hominivorax Coquerel, Cochliomyia macellaria Fabricius, and Chrysomya albiceps Wiedemann . The expression stability of six genes ( Actin, Gapdh, Rp49, Rps17, α -tubulin, and GstD1) was evaluated among species within the same life stage and between life stages within each species. The expression levels of Actin, Gapdh, and Rp49 were the most stable among the selected genes. These genes can be used as reliable reference genes for functional studies in Calliphoridae using similar experimental settings.


Assuntos
Dípteros/genética , Expressão Gênica , Proteínas de Insetos/genética , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/metabolismo , Evolução Molecular , Feminino , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade da Espécie
3.
J Exp Bot ; 64(14): 4301-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997203

RESUMO

In plants, sugars such as glucose act as signalling molecules that promote changes in gene expression programmes that impact on growth and development. Recent evidence has revealed the potential importance of controlling mRNA decay in some aspects of glucose-mediated regulatory responses suggesting a role of microRNAs (miRNAs) in these responses. In order to get a better understanding of glucose-mediated development modulation involving miRNA-related regulatory pathways, early seedling development of mutants impaired in miRNA biogenesis (hyl1-2 and dcl1-11) and miRNA activity (ago1-25) was evaluated. All mutants exhibited a glucose hyposensitive phenotype from germination up to seedling establishment, indicating that miRNA regulatory pathways are involved in the glucose-mediated delay of early seedling development. The expression profile of 200 miRNA primary transcripts (pri-miRs) was evaluated by large-scale quantitative real-time PCR profiling, which revealed that 38 pri-miRs were regulated by glucose. For several of them, the corresponding mature miRNAs are known to participate directly or indirectly in plant development, and their accumulation was shown to be co-regulated with the pri-miR by glucose. Furthermore, the expression of several miRNA target genes was found to be deregulated in response to glucose in the miRNA machinery mutants ago1-25, dcl1-11, and hyl1-2. Also, in these mutants, glucose promoted misexpression of genes for the three abscisic acid signalling elements ABI3, ABI4, and ABI5. Thus, miRNA regulatory pathways play a role in the adjustments of growth and development triggered by glucose signalling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Redes Reguladoras de Genes/genética , Glucose/farmacologia , MicroRNAs/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , MicroRNAs/genética , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos
4.
Nucleic Acids Res ; 41(15): 7387-400, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761445

RESUMO

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.


Assuntos
Anopheles/genética , Genoma de Inseto , Insetos Vetores/genética , Animais , Anopheles/classificação , Brasil , Cromossomos de Insetos/genética , Elementos de DNA Transponíveis , Evolução Molecular , Feminino , Variação Genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Insetos Vetores/classificação , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/parasitologia , Masculino , Anotação de Sequência Molecular , Filogenia , Sintenia , Transcriptoma
5.
Plant Physiol ; 157(2): 692-705, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844310

RESUMO

Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::ß-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glucose/metabolismo , Regiões 5' não Traduzidas , Ácido Abscísico/biossíntese , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Hexoquinase/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , Transdução de Sinais , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA