Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 152(1-2): 138-45, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21592686

RESUMO

The mammalian gastric and oral mucosa may be colonized by mixed Helicobacter and Campylobacter species, respectively, in individual animals. To better characterize the presence and distribution of Helicobacter and Campylobacter among marine mammals, we used PCR and 16S rDNA sequence analysis to examine gastric and oral samples from ten dolphins (Tursiops gephyreus), one killer whale (Orcinus orca), one false killer whale (Pseudorca crassidens), and three wild La Plata river dolphins (Pontoporia blainvillei). Helicobacter spp. DNA was widely distributed in gastric and oral samples from both captive and wild cetaceans. Phylogenetic analysis demonstrated two Helicobacter sequence clusters, one closely related to H. cetorum, a species isolated from dolphins and whales in North America. The second related cluster was to sequences obtained from dolphins in Australia and to gastric non-H. pylori helicobacters, and may represent a novel taxonomic group. Dental plaque sequences from four dolphins formed a third cluster within the Campylobacter genus that likely represents a novel species isolated from marine mammals. Identification of identical Helicobacter spp. DNA sequences from dental plaque, saliva and gastric fluids from the same hosts, suggests that the oral cavity may be involved in transmission. These results demonstrate that Helicobacter and Campylobacter species are commonly distributed in marine mammals, and identify taxonomic clusters that may represent novel species.


Assuntos
Campylobacter/classificação , Cetáceos/microbiologia , Helicobacter/classificação , Filogenia , Animais , Austrália , Campylobacter/genética , Campylobacter/isolamento & purificação , DNA Bacteriano/genética , Helicobacter/genética , Helicobacter/isolamento & purificação , Infecções por Helicobacter/microbiologia , Boca/microbiologia , América do Norte , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estômago/microbiologia
2.
Lab Invest ; 90(7): 1049-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20368700

RESUMO

Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella typhimurium at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IkappaBalpha degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-kappaB activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-kappaB activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. typhimurium. Both a wild-type and an aflagellate mutant S. typhimurium strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-kappaB. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.


Assuntos
Apoptose/efeitos dos fármacos , Flagelina/farmacologia , Neutrófilos/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular , Células Cultivadas , Flagelos/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/metabolismo , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA