Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 554383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026880

RESUMO

Molecular knowledge of virus-antibody interactions is essential for the development of better vaccines and for a timely assessment of the spread and severity of epidemics. For foot-and-mouth disease virus (FMDV) research, in particular, computational methods for antigen-antibody (Ag-Ab) interaction, and cross-antigenicity characterization and prediction are critical to design engineered vaccines with robust, long-lasting, and wider response against different strains. We integrated existing structural modeling and prediction algorithms to study the surface properties of FMDV Ags and Abs and their interaction. First, we explored four modeling and two Ag-Ab docking methods and implemented a computational pipeline based on a reference Ag-Ab structure for FMDV of serotype C, to be used as a source protocol for the study of unknown interaction pairs of Ag-Ab. Next, we obtained the variable region sequence of two monoclonal IgM and IgG antibodies that recognize and neutralize antigenic site A (AgSA) epitopes from South America serotype A FMDV and developed two peptide ELISAs for their fine epitope mapping. Then, we applied the previous Ag-Ab molecular structure modeling and docking protocol further scored by functional peptide ELISA data. This work highlights a possible different behavior in the immune response of IgG and IgM Ab isotypes. The present method yielded reliable Ab models with differential paratopes and Ag interaction topologies in concordance with their isotype classes. Moreover, it demonstrates the applicability of computational prediction techniques to the interaction phenomena between the FMDV immunodominant AgSA and Abs, and points out their potential utility as a metric for virus-related, massive Ab repertoire analysis or as a starting point for recombinant vaccine design.

2.
Front Microbiol ; 11: 591019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250878

RESUMO

Although replication-defective human adenovirus type 5 (Ad5) vectors that express in situ the capsid-encoding region of foot-and-mouth disease virus (FMDV) have been proven to be effective as vaccines in relevant species for several viral strains, the same result was not consistently achieved for the O1/Campos/Brazil/58 strain. In the present study, an optimization of the Ad5 system was explored and was proven to enhance the expression of FMDV capsid proteins and their association into virus-like particles (VLPs). Particularly, we engineered a novel Ad5 vector (Ad5[PVP2]OP) which harbors the foreign transcription unit in a leftward orientation relative to the Ad5 genome, and drives the expression of the FMDV sequences from an optimized cytomegalovirus (CMV) enhancer-promoter as well. The Ad5[PVP2]OP vaccine candidate also contains the amino acid substitutions S93F/Y98F in the VP2 protein coding sequence, predicted to stabilize FMD virus particles. Cells infected with the optimized vector showed an ∼14-fold increase in protein expression as compared to cells infected with an unmodified Ad5 vector tested in previous works. Furthermore, amino acid substitutions in VP2 protein allowed the assembly of FMDV O1/Campos/Brazil/58 VLPs. Evaluation of several serological parameters in inoculated mice with the optimized Ad5[PVP2]OP candidate revealed an enhanced vaccine performance, characterized by significant higher titers of neutralizing antibodies, as compared to our previous unmodified Ad5 vector. Moreover, 94% of the mice vaccinated with the Ad5[PVP2]OP candidate were protected from homologous challenge. These results indicate that both the optimized protein expression and the stabilization of the in situ generated VLPs improved the performance of Ad5-vectored vaccines against the FMDV O1/Campos/Brazil/58 strain and open optimistic expectations to be tested in target animals.

3.
J Virol Methods ; 256: 24-31, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29496429

RESUMO

Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Expressão Gênica , Vetores Genéticos/genética , Herpesvirus Humano 1/genética , Rotavirus/genética , Rotavirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Humanos , Imunidade Humoral , Masculino , Camundongos , Filogenia , Proteínas Recombinantes , Células Vero
4.
Arch Virol ; 163(7): 1769-1778, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29536193

RESUMO

A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.


Assuntos
Vírus da Febre Aftosa/genética , Replicon , Proteínas não Estruturais Virais/química , Replicação Viral/genética , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Linhagem Celular , Núcleo Celular/virologia , Cricetinae , Replicação do DNA , Febre Aftosa/virologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/fisiologia , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Luciferases , Mutação , Domínios Proteicos , Deleção de Sequência , Proteínas não Estruturais Virais/genética
5.
Arch Virol ; 162(8): 2279-2286, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28421368

RESUMO

Recombinant protein 3A-EGFP, a fusion construct between foot-and-mouth disease virus (FMDV) non-structural protein 3A and the enhanced green fluorescent protein (EGFP) was expressed in BL21-DE3 cells. The identity of the partially purified protein 3A-EGFP was confirmed by its reactivity with sera from cattle infected with FMDV and with a monoclonal antibody specific for FMDV-3ABC (MAb3H7) in Western blot assays. No reactivity was observed with sera from uninfected vaccinated animals. The performance of 3A-EGFP as an antigen in an indirect enzyme-linked immunosorbent assay (ELISA) was assessed and compared with that of a previously developed and validated capture ELISA that uses a 3ABC recombinant antigen (3ABC ELISA) and has been widely applied for serological surveys in Argentina. Parallel analysis of strongly and weakly positive reference sera from infected animals and 329 serum samples from uninfected vaccinated cattle showed that the 3A-EGFP antigen unequivocally identifies sera from FMDV-infected cattle with similar performance to its 3ABC counterpart. The 3A-EGFP ELISA is simpler and faster to perform than the 3ABC ELISA, since it does not require a capture step with a specific antibody. Moreover, the expression and storage of the recombinant 3A-EGFP is simplified by the absence of residual autoproteolytic activity associated to the 3C sequence. We conclude that the 3A-EGFP ELISA constitutes a promising screening method in serosurveys to determine whether or not animals are infected with FMDV.


Assuntos
Doenças dos Bovinos/diagnóstico , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/sangue , Argentina , Bovinos , Doenças dos Bovinos/virologia , Proteínas de Fluorescência Verde/imunologia , Proteínas Recombinantes de Fusão/imunologia
6.
J Virol Methods ; 228: 79-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611227

RESUMO

During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks.


Assuntos
Vírus da Cinomose Canina/genética , Animais de Estimação/virologia , Análise de Sequência de DNA , Proteínas Virais de Fusão/genética , Animais , Argentina/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Cinomose/epidemiologia , Cinomose/virologia , Cães , Genótipo , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Homologia de Sequência de Aminoácidos , Proteínas Virais de Fusão/química
7.
J Virol Methods ; 222: 145-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26115608

RESUMO

Ninety-three rectal swab samples were taken, from dogs suspected of canine parvovirus (CPV) infection and analyzed by PCR. A fragment of the VP2 gene, was amplified in 41 (44%) of them, resulting CPV positive samples. Sequencing analysis of these PCR products showed that 37 samples (90.2%) belonged to the CPV2c type, whereas four samples (9.8%) were identified as CPV2a, which has not been found since 2008. It was also found that 24 out of 37 CPV2c samples (65%), carried the mutation Thr440Ala, whereas this mutation was absent in the four CPV2a strains reported herein. Using phylogenetic analysis of the full length VP2 gene, which was amplified by PCR in six local samples, it was seen that CPV2a Argentine strains reported in this study, were genetically closer to a previous local CPV2a isolate (year 2003) and to a South African CPV2a strain, than to any of the recently reported Uruguayan CPV2a strains. The results obtained in this work, together with those reported previously in Uruguay strongly suggest that, in spite of the geographical proximity, wild type CPV strains undergo different evolutive pathways in each country, resulting in the prevalence of different strains in related dog populations. Further extensive epidemiological studies are needed in order to improve the understanding of CPV evolution.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Doenças do Cão/epidemiologia , Infecções por Parvoviridae/veterinária , Parvovirus Canino/isolamento & purificação , Animais , Argentina/epidemiologia , Análise por Conglomerados , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Doenças do Cão/virologia , Cães , Feminino , Variação Genética , Genótipo , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Filogeografia , Reação em Cadeia da Polimerase , Reto/virologia , Análise de Sequência de DNA , Homologia de Sequência
9.
Avian Pathol ; 44(3): 212-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746415

RESUMO

Infectious bursal disease virus (IBDV) is one of the most concerning health problems for world poultry production. IBDVs comprise four well-defined evolutionary lineages known as classic (c), classic attenuated (ca), variant (va) and very virulent (vv) strains. Here, we characterized IBDVs from South America by the genetic analysis of both segments of the viral genome. Viruses belonging to c, ca and vv strains were unambiguously classified by the presence of molecular markers and phylogenetic analysis of the hypervariable region of the vp2 gene. Notably, the majority of the characterized viruses (9 out of 15) could not be accurately assigned to any of the previously described strains and were then denoted as distinct (d) IBDVs. These dIBDVs constitute an independent evolutionary lineage that also comprises field IBDVs from America, Europe and Asia. The hypervariable VP2 sequence of dIBDVs has a unique and conserved molecular signature (272T, 289P, 290I and 296F) that is a diagnostic character for classification. A discriminant analysis of principal components (DAPC) also identified the dIBDVs as a cluster of genetically related viruses separated from the typical strains. DAPC and genetic distance estimation indicated that the dIBDVs are one of the most genetically divergent IBDV lineages. The vp1 gene of the dIBDVs has non-vvIBDV markers and unique nucleotide and amino acid features that support their divergence in both genomic segments. The present study suggests that the dIBDVs comprise a neglected, highly divergent lineage that has been circulating in world poultry production since the early time of IBDV emergence.


Assuntos
Infecções por Birnaviridae/genética , Evolução Molecular , Genoma Viral/genética , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/virologia , Animais , Sequência de Bases , Análise Discriminante , Vírus da Doença Infecciosa da Bursa/classificação , Modelos Genéticos , Dados de Sequência Molecular , Aves Domésticas , Análise de Componente Principal , Análise de Sequência de DNA/veterinária , América do Sul , Especificidade da Espécie , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA