Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069187

RESUMO

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material's catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.

2.
Nanomaterials (Basel) ; 9(12)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835515

RESUMO

The main objective of this study is to evaluate the injection of a dispersed nanocatalyst-based nanofluid in a steam stream for in situ upgrading and oil recovery during a steam injection process. The nanocatalyst was selected through adsorption and thermogravimetric experiments. Two nanoparticles were proposed, ceria nanoparticles (CeO2±Î´), with and without functionalization with nickel, and palladium oxides (CeNi0.89Pd1.1). Each one was employed for static tests of adsorption and subsequent decomposition using a model solution composed of n-C7 asphaltenes (A) and resins II (R) separately and for different R:A ratios of 2:8, 1:1, and 8:2. Then, a displacement test consisting of three main stages was successfully developed. At the beginning, steam was injected into the porous media at a temperature of 210 °C, the pore and overburden pressure were fixed at 150 and 800 psi, respectively, and the steam quality was 70%. This was followed by CeNi0.89Pd1.1 dispersed injection in the steam stream. Finally, the treatment was allowed to soak for 12 h, and the steam flooding was carried out again until no more oil production was observed. Among the most relevant results, functionalized nanoparticles achieved higher adsorption of both fractions as well as a lower decomposition temperature. The presence of resins did not affect the amount of asphaltene adsorption over the evaluated materials. The catalytic activity suggests that the increase in resin content promotes a higher conversion in a shorter period of time. Also, for the different steps of the dynamic test, increases of 25% and 42% in oil recovery were obtained for the dispersed injection of the nanofluid in the steam stream and after a soaking time of 12 h, compared with the base curve with only steam injection, respectively. The upgraded crude oil reached an API gravity level of 15.9°, i.e., an increase in 9.0° units in comparison with the untreated extra-heavy crude oil, which represents an increase of 130%. Also, reductions of up to 71% and 85% in the asphaltene content and viscosity were observed.

3.
Nanomaterials (Basel) ; 9(5)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085999

RESUMO

The main objective of this study is to evaluate the regenerative effect of functionalized CeO2±Î´ nanoparticles with a mass fraction of 0.89% of NiO and 1.1% of PdO in adsorption and subsequent decomposition of n-C7 asphaltenes in steam gasification processes. During each regeneration cycle, the adsorption capacity and the catalytic activity of the nanoparticles were evaluated. To estimate the adsorption capacity of the nanoparticles, adsorption kinetics were studied at a fixed concentration of n-C7 asphaltenes of 10 mg·L-1 as well as adsorption isotherms at three different temperatures at 25 °C, 55 °C, and 75 °C. To evaluate the catalytic activity, the loss of mass of the nanoparticles was evaluated by isothermal conversions with a thermogravimetric analyzer at 230 °C, 240 °C, and 250 °C, and at non-isothermal conditions involving a heating from 100 °C to 600 °C at a 20 °C·min-1 heating rate. The asphaltenes showed a high affinity for being adsorbed over the nanoparticles surface, due to the nanoparticles-asphaltene interactions are stronger than those that occur between asphaltene-asphaltene, and this was maintained during nine evaluated regeneration cycles as observed in the Henry's constant that increased slightly, with changes of 21%, 26% and 31% for 25 °C, 55 °C and 75 °C. Polanyi's adsorption potential decreases by 2.6% for the same amount adsorbed from the first cycle to the ninth. In addition, the catalytic activity of the nanoparticles did not change significantly, showing that they decompose 100% of the n-C7 asphaltenes in all cycles. However, the small decrease in the adsorption capacity and catalytic activity of the nanoparticles is mainly due to the presence and change in concentration and ratio of certain elements such as oxygen, iron or others at the surface of the nanoparticle as shown by X-ray photoelectron spectroscopy (XPS) analyses. Thermodynamic parameters of adsorption such as Δ H a d s o , Δ S a d s o , and Δ G a d s o and the effective activation energy (Ea) were calculated to compare adsorptive and catalytic performance during each cycle. There is an increase of 9.3% and 2.6% in the case of entropy and enthalpy, respectively, and a decrease of 0.5%, 3.1% and 6.5% for 25 °C, 55 °C and 75 °C respectively for the Gibss free energy from cycle 1 to cycle 9. It was found that these parameters are correlated with the Ce concentration and oxidation state ratios (Ce3+/Ce4+ couple) at the surface.

4.
Nanomaterials (Basel) ; 9(3)2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857326

RESUMO

The main objective of this work is the catalyst optimization of Fe2O3-, Co3O4-, NiO- and/or PdO- (transition element oxides-TEO) functionalized CeO2 nanoparticles to maximize the conversion of asphaltenes under isothermal conditions at low temperatures (<250 °C) during steam injection processes. Adsorption isotherms and the subsequent steam decomposition process of asphaltenes for evaluating the catalysis were performed through batch adsorption experiments and thermogravimetric analyses coupled to Fourier-transform infrared spectroscopy (FTIR), respectively. The adsorption isotherms and the catalytic behavior were described by the solid-liquid equilibrium (SLE) model and isothermal model, respectively. Initially, three pairs of metal oxide combinations at a mass fraction of 1% of loading of CeNi1Pd1, CeCo1Pd1, and CeFe1Pd1 nanoparticles were evaluated based on the adsorption and catalytic activity, showing better results for the CeNi1Pd1 due to the Lewis acidity changes. Posteriorly, a simplex-centroid mixture design of experiments (SCMD) of three components was employed to optimize the metal oxides concentration (Ni and Pd) onto the CeO2 surface by varying the oxides concentration for mass fractions from 0.0% to 2.0% to maximize the asphaltene conversion at low temperatures. Results showed that by incorporating mono-elemental and bi-elemental oxides onto CeO2 nanoparticles, both adsorption and isothermal conversion of asphaltenes decrease in the order CeNi1Pd1 > CePd2 > CeNi0.66Pd0.66 > CeNi2 > CePd1 > CeNi1 > CeO2. It is worth mentioning that bi-elemental nanoparticles reduced the gasification temperature of asphaltenes in a larger degree than mono-elemental nanoparticles at a fixed amount of adsorbed asphaltenes of 0.02 mg·m-2, confirming the synergistic effects between Pd and Fe, Co, and Ni. Further, optimized nanoparticles (CeNi0.89Pd1.1) have the best performance by obtaining 100% asphaltenes conversion in less than 90 min at 220 °C while reducing 80% the activation energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA