Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 165: 103778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690295

RESUMO

Extracellular vesicles (EVs) are nanosized structures containing proteins, lipids, and nucleic acids, released by living cells to the surrounding medium. EVs participate in diverse processes, such as intercellular communication, virulence, and disease. In pathogenic fungi, EVs carry enzymes that allow them to invade the host or undergo environmental adaptation successfully. In Neurospora crassa, a non-pathogenic filamentous fungus widely used as a model organism, the vesicle-dependent secretory mechanisms that lead to polarized growth are well studied. In contrast, biosynthesis of EVs in this fungus has been practically unexplored. In the present work, we analyzed N. crassa culture's supernatant for the presence of EVs by dynamic light scattering (DLS), transmission electron microscopy (TEM) and proteomic analysis. We identified spherical membranous structures, with a predominant subpopulation averaging a hydrodynamic diameter (dh) of 68 nm and a particle diameter (dp) of 38 nm. EV samples stained with osmium tetroxide vapors were better resolved than those stained with uranyl acetate. Mass spectrometry analysis identified 252 proteins, including enzymes involved in carbohydrate metabolic processes, oxidative stress response, cell wall organization/remodeling, and circadian clock-regulated proteins. Some of these proteins have been previously reported in exosomes from human cells or in EVs of other fungi. In view of the results, it is suggested a putative role for EVs in cell wall biosynthesis and vegetative development in N. crassa.


Assuntos
Vesículas Extracelulares , Neurospora crassa , Humanos , Hifas , Proteômica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Transmissão
2.
PLoS Genet ; 14(11): e1007390, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500812

RESUMO

The ability to respond to injury is a biological process shared by organisms of different kingdoms that can even result in complete regeneration of a part or structure that was lost. Due to their immobility, multicellular fungi are prey to various predators and are therefore constantly exposed to mechanical damage. Nevertheless, our current knowledge of how fungi respond to injury is scarce. Here we show that activation of injury responses and hyphal regeneration in the filamentous fungus Trichoderma atroviride relies on the detection of two danger or alarm signals. As an early response to injury, we detected a transient increase in cytosolic free calcium ([Ca2+]c) that was promoted by extracellular ATP, and which is likely regulated by a mechanism of calcium-induced calcium-release. In addition, we demonstrate that the mitogen activated protein kinase Tmk1 plays a key role in hyphal regeneration. Calcium- and Tmk1-mediated signaling cascades activated major transcriptional changes early following injury, including induction of a set of regeneration associated genes related to cell signaling, stress responses, transcription regulation, ribosome biogenesis/translation, replication and DNA repair. Interestingly, we uncovered the activation of a putative fungal innate immune response, including the involvement of HET domain genes, known to participate in programmed cell death. Our work shows that fungi and animals share danger-signals, signaling cascades, and the activation of the expression of genes related to immunity after injury, which are likely the result of convergent evolution.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Micoses/microbiologia , Regeneração , Transdução de Sinais , Trichoderma/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Micoses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA