Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Physiol B ; 193(6): 661-676, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37752253

RESUMO

Early life is a challenging phase because of the high rates of morphophysiological development and growth. Changes in ambient temperature, which directly affect energy metabolism and digestive functions in ectotherms, may be of great impact during this phase. We addressed this issue in red-footed tortoise (Chelonoidis carbonaria) hatchlings kept in captivity. To this end, we investigated the effect of temperature (28 °C and 18 °C) on mass-specific gross energy intake (GEIm), daily body mass gain (MG), daily intake of gross energy (GEI), digestible energy (DEI), resting metabolic rate (RMR), and specific dynamic action (SDA) components during different seasons in the first 13 months after hatching. Greater GEIm and MG were observed in spring (381.7 ± 84.9 J.g-0.86.day-1 and 0.9 ± 0.4 g.day-1) and summer (356.9 ± 58.9 J.g-0.86.day-1 and 1.0 ± 0.4 g.day-1). The highest and lowest RMRs at 28 °C were observed in spring (36.4 ± 5.1 kJ.kg-1.day-1) and winter (22.4 ± 6.2 kJ.kg-1.day-1), respectively. Regardless season, hatchlings showed greater GEI and DEI, O2 consumption, CO2 production, RMR, maximum metabolic rate after feeding (FMRMAX), and heat increment (FMRMAX- RMR) at 28 °C compared to 18 °C. In addition, the significant body mass influence showed allometric exponents of 0.62 at 28 °C and 0.92 at 18 °C for RMR. Our results indicate an important effect of environmental temperature on energy requirements and utilization in C. carbonaria hatchlings, which is seasonally influenced even in this early phase of life.


Assuntos
Tartarugas , Animais , Temperatura , Metabolismo Energético/fisiologia , Metabolismo Basal , Ingestão de Energia
2.
Metallomics ; 11(2): 282-290, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30358789

RESUMO

The lack of copper has been associated with anemia, myelodysplastic syndromes and leukemia as well as with a loss in complex IV activity and an enlarged mitochondrial morphology. Mitochondria play a key role during the differentiation of hematopoietic stem cells by regulating the passage from a glycolytic to oxidative metabolism. The former is associated with cell proliferation and the latter with cell differentiation. Oxidative metabolism, which occurs inside mitochondria, is sustained by the respiratory chain, where complex IV is copper-dependent. We have hypothesized that a copper deficiency induces a mitochondrial metabolic reprogramming, favoring cell expansion over cell differentiation in erythropoiesis. Erythroid progression analysis of the bone marrow of mice fed with a copper deficient diet and of the in vitro erythropoiesis of human CD34+ cells treated with a bathocuproine - a copper chelator - showed a major expansion of progenitor cells and a decreased differentiation. Under copper deficiency, mitochondria switched to a higher membrane potential, lower oxygen consumption rate and lower ROS levels as compared with control cells. In addition, mitochondrial biomass was increased and an up-regulation of the mitochondrial fusion protein mitofusin 2 was observed. Most copper-deficient phenotypes were mimicked by the pharmacological inhibition of complex IV with azide. We concluded that copper deficiency induced a mitochondrial metabolic reprogramming, making hematopoietic stem cells favor progenitor cell expansion over cell differentiation.


Assuntos
Proliferação de Células/fisiologia , Leucócitos Mononucleares/metabolismo , Animais , Western Blotting , Proliferação de Células/genética , Células Cultivadas , Cobre/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA