Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559134

RESUMO

BACKGROUND: The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin's receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS: The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS: Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS: Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation.


Assuntos
Bacillus , Toxinas Bacterianas , Culex , Animais , Feminino , Toxinas Bacterianas/metabolismo , Culex/metabolismo , Lipídeos , Larva/genética
2.
Pest Manag Sci ; 77(7): 3135-3144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644981

RESUMO

BACKGROUND: Culex quinquefasciatus resistance to the binary toxin from Lysinibacillus sphaericus larvicides can occur because of mutations in the cqm1 gene that prevents the expression of the toxin receptor, Cqm1 α-glucosidase. In a resistant laboratory-selected colony maintained for more than 250 generations, cqm1REC and cqm1REC-2 resistance alleles were identified. The major allele initially found, cqm1REC , became minor and was replaced by cqm1REC-2 . This study aimed to investigate the features associated with homozygous larvae for each allele to understand the reasons for the allele replacement and to generate knowledge on resistance to microbial larvicides. RESULTS: Homozygous larvae for each allele were compared. Both larvae displayed the same level of resistance to the binary toxin (3500-fold); therefore, a change in phenotype was not the reason for the replacement observed. The lack of Cqm1 expression did not reduce the total specific α-glucosidase activity for homozygous cqm1REC and cqm1REC-2 larvae, which were statistically similar to the susceptible strain, using artificial or natural substrates. The expression of eight Cqm1 paralog α-glucosidases was demonstrated in resistant and susceptible larvae. Bioassays in which cqm1REC or cqm1REC-2 homozygous larvae were reared under stressful conditions showed that most adults produced were cqm1REC-2 homozygous (69%). Comparatively, in the offspring of a heterozygous sub-colony reared under optimal conditions for 20 generations, the cqm1REC allele assumed a higher frequency (0.72). CONCLUSION: Homozygous larvae for each allele exhibited a similar resistant phenotype. However, they presented specific advantages that might favor their selection and can be used in designing resistance management practices. © 2021 Society of Chemical Industry.


Assuntos
Toxinas Bacterianas , Culex , Proteínas de Insetos/genética , alfa-Glucosidases/genética , Alelos , Animais , Bacillaceae , Culex/enzimologia , Culex/genética , Larva/genética
3.
FEBS J ; 282(18): 3592-602, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26131741

RESUMO

The Cqm1 α-glucosidase, expressed within the midgut of Culex quinquefasciatus mosquito larvae, is the receptor for the Binary toxin (Bin) from the entomopathogen Lysinibacillus sphaericus. Mutations of the Cqm1 α-glucosidase gene cause high resistance levels to this bacterium in both field and laboratory populations, and a previously described allele, cqm1REC, was found to be associated with a laboratory-resistant colony (R2362). This study described the identification of a novel resistance allele, cqm1REC-2, that was co-selected with cqm1REC within the R2362 colony. The two alleles display distinct mutations but both generate premature stop codons that prevent the expression of midgut-bound Cqm1 proteins. Using a PCR-based assay to monitor the frequency of each allele during long-term maintenance of the resistant colony, cqm1REC was found to predominate early on but later was replaced by cqm1REC-2 as the most abundant resistance allele. Homozygous larvae for each allele were then generated that displayed similar high-resistance phenotypes with equivalent low levels of transcript and lack of protein expression for both cqm1REC and cqm1REC-2. In progeny from a cross of homozygous individuals for each allele at a 1 : 1 ratio, analyzed for ten subsequent generations, cqm1REC showed a higher frequency than cqm1REC-2. The replacement of cqm1REC by cqm1REC -2 observed in the R2362 colony, kept for 210 generations, indicates changes in fitness related to traits that are unknown but linked to these two alleles, and constitutes a unique example of evolution of resistance within a controlled laboratory environment.


Assuntos
Bacillaceae/patogenicidade , Culex/genética , Culex/microbiologia , Animais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Cruzamentos Genéticos , Culex/enzimologia , Evolução Molecular , Feminino , Frequência do Gene , Genes de Insetos , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/microbiologia , Masculino , Mutação , Seleção Genética , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA