Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 131(2): 833-843, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33420735

RESUMO

AIMS: Alternaria alternata is a major contaminant of wine grapes, meaning a health risk for wine consumers due to the accumulation of toxic metabolites. To develop a successful biofungicide, the effectiveness of epiphytic wine grape yeasts against A. alternata growth and toxin production was assessed in vitro under temperature and aW conditions that simulate those present in the field. METHODS AND RESULTS: The effect of 14 antagonistic yeasts was evaluated on growth and alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) production by three A. alternata strains in a synthetic medium with composition similar to grape (SN) at three temperatures (15, 25 and 30°C). All Metschnikowia sp. yeast strains evaluated completely prevented A. alternata growth and mycotoxin production at all temperatures in SN medium. Meanwhile, the growth inhibition exerted by Starmerella bacillaris yeast strains was higher at 30°C, followed by 25 and 15°C, being able to show a stimulating or inhibiting effect. Hanseniaspora uvarum yeast strains showed a growth promoting activity higher at 15°C, followed by 25 and 30°C. Even at conditions where A. alternata growth was stimulated by the S. bacillaris and H. uvarum yeasts, high inhibitions of mycotoxin production (AOH, AME and TA) were observed, indicating a complex interaction between growth and mycotoxin production. CONCLUSION: There is a significant influence of temperature on the effectiveness of biocontrol against A. alternata growth and mycotoxin production. Metschnikowia sp. strains are good candidates to compose a biofungicide against A. alternata. SIGNIFICANCE AND IMPACT OF THE STUDY: Among the different antagonistic yeasts evaluated, only Metschnikowia sp. strains were equally effective reducing A. alternata growth and mycotoxin at different temperatures underlining the importance of considering environmental factors in the selection of the antagonists.


Assuntos
Antibiose , Micotoxinas , Vitis , Leveduras/fisiologia , Alternaria/patogenicidade , Frutas/microbiologia , Hanseniaspora , Lactonas/análise , Micotoxinas/análise , Saccharomycetales , Vitis/microbiologia , Vinho
2.
Lett Appl Microbiol ; 60(5): 467-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25598190

RESUMO

UNLABELLED: The influence of oenological factors on cold-active pectinases from 15 preselected indigenous yeasts belonging to Aureobasidium pullulans, Filobasidium capsuligenum, Rhodotorula dairenensis, Cryptococcus saitoi and Saccharomyces cerevisiae was investigated. Pectinolytic enzymes were constitutive or partially constitutive; and high glucose concentration (200 g l(-1) ) did not affect or increased pectinase production at 12°C and pH 3·5 (up to 113·9 U mg(-1) ) only in A. pullulans strains. SO2 (120 mg l(-1) ) slightly affected the growth of A. pullulans strains but did not affect pectinase production levels. Ethanol (15%) barely affected pectinase activity of A. pullulans strains but diminished relative activity to 12-79% of basidiomycetous yeasts. Moreover, non-Saccharomyces strains showed promising properties of oenological interest. This study demonstrates that cold-active pectinases from some A. pullulans strains were able to remain active at glucose, ethanol and SO2 concentrations usually found in vinification, and suggests their potential use as processing aids for low-temperature winemaking. SIGNIFICANCE AND IMPACT OF THE STUDY: Nowadays, there is increasing interest in low-temperature winemaking. Nevertheless, commercial oenological pectinases, produced by fungi, are rarely active at low temperatures. Cold-active pectinases that are stable under vinification conditions are needed. This study indicated that cold-active and acid-tolerant pectinases from non-Saccharomcyes yeasts were able to remain active at glucose, ethanol and SO2 concentrations usually found in winemaking. Furthermore, not only are these yeasts a source of cold-active pectinases, but the yeasts themselves are also potential adjunct cultures for oenology to produce these enzymes during cold-winemaking.


Assuntos
Basidiomycota/enzimologia , Pectinas/metabolismo , Poligalacturonase/metabolismo , Saccharomyces cerevisiae/enzimologia , Vinho/microbiologia , Temperatura Baixa , Etanol/química , Fungos , Glucose/química , Poligalacturonase/química , Dióxido de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA