Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sex Dev ; 15(1-3): 38-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34167126

RESUMO

The discovery in mammals that fetal testes are required in order to develop the male phenotype inspired research efforts to elucidate the mechanisms underlying gonadal sex determination and differentiation in vertebrates. A pioneer work in 1966 that demonstrated the influence of incubation temperature on sexual phenotype in some reptilian species triggered great interest in the environment's role as a modulator of plasticity in sex determination. Several chelonian species have been used as animal models to test hypotheses concerning the mechanisms involved in temperature-dependent sex determination (TSD). This brief review intends to outline the history of scientific efforts that corroborate our current understanding of the state-of-the-art in TSD using chelonian species as a reference.


Assuntos
Tartarugas , Animais , Gônadas , Masculino , Análise para Determinação do Sexo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Temperatura
2.
J Med Virol ; 93(7): 4480-4487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764543

RESUMO

To date, mother-to-fetus transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19) pandemic, remains controversial. Although placental COVID-19 infection has been documented in some cases during the second- and third-trimesters, no reports are available for the first trimester of pregnancy, and no SARS-CoV-2 protein has been found in fetal tissues. We studied the placenta and fetal organs from an early pregnancy miscarriage in a COVID-19 maternal infection by immunohistochemical, reverse transcription quantitative real-time polymerase chain reaction, immunofluorescence, and electron microscopy methods. SARS-CoV-2 nucleocapsid protein, viral RNA, and particles consistent with coronavirus were found in the placenta and fetal tissues, accompanied by RNA replication revealed by double-stranded RNA (dsRNA) positive immunostain. Prominent damage of the placenta and fetal organs were associated with a hyperinflammatory process identified by histological examination and immunohistochemistry. The findings provided in this study document that congenital SARS-CoV-2 infection is possible during the first trimester of pregnancy and that fetal organs, such as lung and kidney, are targets for coronavirus. The infection and multi-organic fetal inflammation produced by SARS-CoV-2 during early pregnancy should alert clinicians in the assessment and management of pregnant women for possible fetal consequences and adverse perinatal outcomes.


Assuntos
COVID-19/transmissão , Transmissão Vertical de Doenças Infecciosas , Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/metabolismo , Aborto Espontâneo/virologia , Adulto , COVID-19/patologia , Feminino , Feto/patologia , Feto/virologia , Humanos , Placenta/patologia , Gravidez , Resultado da Gravidez , Primeiro Trimestre da Gravidez , Gestantes , RNA Viral/análise
3.
Int J Dev Biol ; 65(1-2-3): 59-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930352

RESUMO

Contemporary scientific endeavor in México emanates from two great public institutions: the Universidad Nacional Autónoma de México (UNAM) and the Instituto Politécnico Nacional (IPN), founded in 1929 and 1936, respectively. Here, the first research institutes and centers dedicated to various scientific areas were created. Thus, the origin of most laboratories of Developmental Biology in México was like that of other scientific fields. In this article, I have attempted to describe the establishment of a specialized community involved in the understanding of organism development during ontogeny. The use of chick embryos to study heart development was among the first experimental approaches developed in México. Then, a younger group employed chick embryos to study the mechanisms underlying limb development. Various laboratory animal models have been employed, including mouse, rat, rabbit, and recently the naked mole-rat, as well as some wild species, such as sea turtles and bats. Two classical invertebrates, Drosophila melanogaster, and Caenorhadbitis elegans, also form part of the multilayered complex models used by Mexican developmental biologists. My use of animals brought me closer to the pioneer developmental biologists who worked with animal models. Their academic trajectory was more detailed than that of investigators using plant models. However, the pioneering merit and bright contributions of the two groups are on a par, regardless of the biological model. As current scientific knowledge is the sum of individual contributions throughout human history, here I have attempted to describe my suitable experience as a witness to the birth of the fascinating field of developmental biology in my country.


Assuntos
Biologia do Desenvolvimento , Modelos Animais , Animais , Embrião de Galinha , Biologia do Desenvolvimento/tendências , Drosophila melanogaster , México , Camundongos , Coelhos
4.
Int J Dev Biol ; 65(4-5-6): 403-412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930364

RESUMO

The endocrine disruptor Bisphenol A (BPA) crosses the placental barrier and reaches the fetal organs, including the gonads. In the testis, fetal Leydig cells (FLC) produce testosterone required for the male phenotype and homeostatic cell-cell signaling in the developing testis. Although it is known that BPA affects cell proliferation and differentiation in FLC, results concerning the mechanism involved are contradictory, mainly due to differences among species. Fast developing fetal gonads of rodents lack cortex and medulla, whereas species with more extended gestation periods form these two tissue compartments. The rabbit provides a good subject for studying the disruptive effect of BPA in fetal Leydig and possible postnatal endocrine consequences in adult Leydig cells. Here, we investigated the impact of BPA administered to pregnant rabbits on the FLC population of the developing testes. Using qRT-PCR, we assessed the levels of SF1, CYP11A1, 3ß-HSD, and androgen receptor genes, and levels of fetal serum testosterone were measured by ELISA. These levels correlated with both the mitotic activity and the ultrastructural differentiation of the FLC by confocal and electron microscopy, respectively. Results indicate that BPA alters the expression levels of essential genes involved in androgen paracrine signaling, modifies the proliferation and differentiation of the FLCs, and alters the levels of serum testosterone after birth. Thus, BPA may change the postnatal levels of serum testosterone due to the impaired FLC population formed by the proliferating stem and non-proliferating cytodifferentiated FLC.


Assuntos
Compostos Benzidrílicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Intersticiais do Testículo , Exposição Materna , Fenóis/farmacologia , Testículo , Animais , Feminino , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Placenta , Gravidez , Coelhos , Testículo/citologia , Testículo/efeitos dos fármacos , Testosterona
5.
Exp Cell Res ; 375(1): 31-41, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557557

RESUMO

Studies have described the presence of pluripotent markers in vivo and in vitro in human amnion. However, the amnion can be divided into reflected, placental and umbilical regions that are anatomically and functionally heterogeneous. Here, we evaluated the expression of pluripotency markers in tissue and cultivated cells in vitro of different regions of human amnion. To this end, we determined the presence of the core pluripotency factors OCT-4, NANOG and SOX-2 by immunofluorescence and RT-PCR and also performed transcriptome analysis of the different regions of amnion tissue. We identified the mRNA and protein of the pluripotency factors in the different regions of human amnion tissue. However, the OCT-4 and NANOG immunolocalization was cytoplasmic, whereas SOX-2 immunolocalization was nuclear regardless of the region analyzed. Moreover, we found three subpopulations of cells in the in vitro cultures of reflected and placental amnion: cells with immunostaining only in the nucleus, only in the cytoplasm, or in both compartments. Yet no statistically significant differences were found between the reflected and placental amnion. These results suggest a homogeneous distribution of the pluripotency transcription factors of the different regions of human amnion to isolate stem cells that can be used in regenerative medicine.


Assuntos
Âmnio/metabolismo , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Âmnio/crescimento & desenvolvimento , Biomarcadores/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Fatores de Transcrição SOXB1/genética
6.
Histol Histopathol ; 34(7): 775-789, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30589059

RESUMO

The ovary is a structurally dynamic organ that alters with age. Modifications in the paracrine status influence the capacity of aging oocytes to develop normal embryos. Despite the importance of understanding the cellular and molecular mechanism involved in the process of ovarian aging, histological changes remain poorly understood. Correlating the process of folliculogenesis and somatic cell function during ovarian aging is essential to explain the reproductive decline of aged mammalian species, including humans. Here, we performed a morphological and immunohistological study on the ovaries of chinchilla rabbits that varied in age from one to 34-months. The spatiotemporal expression of the cholesterol side-chain cleavage cytochrome P450scc (CYP11A) and the smooth muscle actin (SMA) were analyzed. A significant histological rearrangement of immunodetected cells in theca interna, theca externa and the interstitial tissue around the follicles occurred. The expression of CYP11A1 decreased considerably in antral follicles of aging ovaries. Moreover, we found that the secondary interstitial gland developed extensively, and a remarkable rearrangement of the surface epithelium occurred in aging ovaries. In contrast to ovaries during the reproductive period, the immunohistological changes demonstrate that the interstitial gland became the most abundant tissue during the aging of ovaries. Thus, the current study provides new data for understanding the alteration of somatic cell function in elderly ovaries and how this affects their declined fertility.


Assuntos
Folículo Ovariano/anatomia & histologia , Ovário/anatomia & histologia , Actinas/metabolismo , Envelhecimento , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Epitélio/metabolismo , Feminino , Oócitos/citologia , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Ovário/citologia , Ovário/metabolismo , Coelhos , Células Tecais/citologia
7.
Gen Comp Endocrinol ; 236: 35-41, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27342379

RESUMO

Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination.


Assuntos
Metilação de DNA/genética , Processos de Determinação Sexual/genética , Tartarugas/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Temperatura
8.
Gac Med Mex ; 151(1): 66-74, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-25739486

RESUMO

There have been major recent advances in the field of developmental biology due to the investigation on stem cells (SC). Stem cells are characterized by their capacity of auto-renewal and differentiation to different cellular phenotypes. Based on the developmental stage, they can be classified into two different types: embryonic SCs and adult SCs. It has been widely reported that several problems need to be resolved before their possible clinical applications. As a result, fetal membranes have been suggested as an alternative source of SCs. In the human amniotic epithelium, the presence of markers of pluripotent SC´s has been reported, and its capacity as a feeder layer for expansion of different SC types. Also, fetal membranes are a discarded product after delivery, and thus there are not any ethical issues related to its use. In conclusion, the human amniotic epithelium can be a strong candidate for regenerative medicine.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Células-Tronco/citologia , Diferenciação Celular , Membranas Extraembrionárias/citologia , Humanos , Medicina Regenerativa/métodos
9.
Int J Dev Biol ; 58(10-12): 733-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26154314

RESUMO

Brain aromatase participates in several biological processes, such as regulation of the reproductive-endocrine axis, memory, stress, sexual differentiation of the nervous system, male sexual behavior, and brain repair. Here we report the isolation and expression of brain aromatase in olive ridley sea turtle (Lepidochelys olivacea) embryos incubated at male- and female-promoting temperatures (MPT and FPT, respectively), at the thermosensitive period (TSP) and the sex-differentiated period. Also, aromatase expression was assessed in differentiated embryos exposed to bisphenol-A (BPA) during the TSP. BPA is a monomer of polycarbonate plastics and is considered an endocrine-disrupting compound. Normal aromatase expression was measured in both forebrain and hindbrain, showing higher expression levels in the forebrain of differentiated embryos at both incubation temperatures. Although no significant differences were detected in the hindbrain, expression was slightly higher at MPT. BPA did not affect aromatase expression neither in forebrains or hindbrains from embryos incubated at MPT, whereas at FPT an inverted U-shape curve was observed in forebrains with significant differences at lower concentrations, whereas in hindbrains a non-significant increment was observed at higher concentrations. Our data indicate that both incubation temperature and developmental stage are critical factors affecting aromatase expression in the forebrain. Because of the timing and location of aromatase expression in the brain, we suggest that brain aromatase may participate in the imprinting of sexual trends related to reproduction and sexual behavior at the onset of sex differentiation, and BPA exposure may impair aromatase function in the female forebrain.


Assuntos
Aromatase/biossíntese , Compostos Benzidrílicos/farmacologia , Fenóis/farmacologia , Prosencéfalo/metabolismo , Rombencéfalo/metabolismo , Tartarugas/metabolismo , Sequência de Aminoácidos/genética , Animais , Estrogênios/biossíntese , Feminino , Expressão Gênica/genética , Masculino , Dados de Sequência Molecular , Prosencéfalo/efeitos dos fármacos , Rombencéfalo/efeitos dos fármacos , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Temperatura , Tartarugas/embriologia , Tartarugas/genética
10.
Genes (Basel) ; 4(2): 293-305, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24705165

RESUMO

The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP) at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA