Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Stem Cell Res Ther ; 10(1): 121, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995945

RESUMO

BACKGROUND: Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. METHODS: We injected rat MSC (rMSC) intravitreally in adult (3-5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. RESULTS: rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. CONCLUSIONS: We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa , Traumatismos do Nervo Óptico , Nervo Óptico/fisiologia , Aloenxertos , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Masculino , Células-Tronco Mesenquimais/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/terapia , Ratos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
3.
Stem Cells Int ; 2016: 5078619, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26649049

RESUMO

Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

4.
Invest Ophthalmol Vis Sci ; 53(8): 4720-9, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22695963

RESUMO

PURPOSE: Bone marrow mononuclear cells (BMMCs) have been used with considerable success to improve regeneration and/or functional recovery in animal models of neurologic diseases. Injected into the host, they migrate to the damaged areas and release cytokines and/or trophic factors, which are capable of altering the genetic program of the injured tissue cells. In this study, there was a search for genes with altered expression in a model of optic nerve crush and cell therapy. METHODS: Optic nerve crush was followed by an intravitreous injection of BMMCs or vehicle in adult rats. After 14 days, we obtained a transcriptome screening of the retinas using differential display and automatic sequencing, followed by q-PCR, Western blot, and immunohistochemistry of selected genes and proteins. RESULTS: Among the differentially displayed genes, transcription of the antiapoptotic Tax1-binding protein 1 (Tax1BP1) and Synaptotagmin IV (Syt IV), an immediate early gene, is increased in the treated group. Tax1BP1 expression is robust in the ganglion cell layer and is significantly increased by cell therapy. Syt IV is expressed by activated Müller cells and astrocytes in the retina and optic nerve, without changes in protein levels among the groups. CONCLUSIONS: Tax1BP1 and Syt IV transcription and/or expression are differently modulated by optic nerve crush and BMMC treatment, and might be related to neuronal damage and cell-therapy effects in the retina. The increased expression of Tax1BP1 in the treated eyes could be involved in the neuroprotective effects of BMMCs that were described previously by our group.


Assuntos
Células da Medula Óssea/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Compressão Nervosa , Traumatismos do Nervo Óptico/metabolismo , Sinaptotagminas/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , Modelos Animais de Doenças , Proteínas de Neoplasias/metabolismo , Nervo Óptico/metabolismo , Reação em Cadeia da Polimerase/métodos , Ratos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
5.
Cell Transplant ; 20(3): 391-406, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20719093

RESUMO

The central nervous system (CNS) of adult mammals generally does not regenerate, and many studies have attempted to identify factors that could increase neuroprotection and/or axonal outgrowth after CNS lesions. Using the optic nerve crush of rats as a model for CNS injury, we investigated the effect of intravitreal transplantation of syngeneic bone-marrow mononuclear cells (BMMCs) on the survival of retinal ganglion cells (RGC) and on the regeneration of optic axons. Control animals received intravitreal saline injections after lesion. Injections of BMMCs resulted in a 1.6-fold increase in the number of RGCs surviving 14 days after injury. The BMMC-treated animals also had increased numbers of axons, which grew up to 1.5 mm from the crush site, and also had reduced Müller glia activation. Analysis of mRNAs in all conditions revealed an increase in levels of fibroblast growth factor 2 (FGF-2) mRNA in treated animals 14 days after injury. To investigate whether the regenerated axons could reach the brain, we retrograde labeled the RGCs by injecting a lipophilic tracer into the superior colliculus. We also analyzed the expression of NGFI-A in the superficial layers of the superior colliculus as a possible marker of synaptic input from RGC axons. We found evidence that more RGCs were able to reach the brain after treatment and we showed that NGFI-A expression was higher in the treated animals 60 days after injury. These results demonstrate that transplant of BMMCs can increase neuroprotection and neuroregeneration after injury in a model of optic nerve crush, and these effects could be mediated by FGF-2.


Assuntos
Axônios/fisiologia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Regeneração Nervosa , Células Ganglionares da Retina/citologia , Animais , Sobrevivência Celular , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Ratos , Proteínas Repressoras/metabolismo , Colículos Superiores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA