Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Manage ; 72(4): 727-740, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477675

RESUMO

Biodiversity offsets are commonly used to compensate for environmental impacts, but their effectiveness is often questioned. Estimations of expected losses and gains often rely on what we called condition metrics, which measure a site's quality or condition using certain ecological attributes. Condition metrics are central to most offset policies, but their attributes and calculations vary substantially. We reviewed the academic literature to draw a profile of existing condition metrics used in the offsetting context. We found 17 metrics that differed in how they included attributes from the three "dimensions of equivalence": biodiversity (present in 15 metrics), landscape (in 10 metrics) and ecosystem services (in 5 metrics). Most metrics included many ecological attributes and required fieldwork and GIS data to be calculated, but few used modeling and expert opinion. Generally, metrics aggregated the attributes into a single final value and were created in Global North countries. To favor more transparent and ecologically equivalent offset trades worldwide, we suggest condition metrics should include the three dimensions of equivalence in a disaggregated way, i.e. measurements done separately and analyzed in parallel. The use of modeling, expert opinion and GIS may facilitate the inclusion of the dimensions and reduce the need for intensive (and expensive) fieldwork. Testing synergies and trade-offs among attributes could indicate if metrics can be simplified without losing information. Finally, development of fit-for-purpose condition metrics is especially important in Global South countries, where few such metrics exist.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Benchmarking , Biodiversidade
2.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20211373, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394007

RESUMO

Abstract Natural ecosystems are under severe threat worldwide and environmental policies are essential to minimize present and future impacts on biodiversity, ecosystem services and climate change. The New Forest Act in Brazil is the main policy to protect native vegetation in private lands, which comprise 54% of the remaining Brazilian native vegetation. However, conflicts between environmental and agricultural concerns in its implementation demand for balanced solutions based on scientific evidence. To face the challenge of applying science in environmental policy establishment, we developed a scientific project funded by the São Paulo State Research Foundation (FAPESP) to support the implementation of the New Forest Act in São Paulo State, as part of the Biota/FAPESP Program. The project was conducted differently from a regular research project: the broad objective was to provide scientific support to the State's implementation of the New Forest Act, based on a participatory interaction among stakeholders to build specific objectives, methods, and discussion of results, within an interdisciplinary and intersectoral research team. Here, we present the lessons learned during and after the four years of the research project development to evaluate how scientific knowledge can be produced and adopted in the implementation of a specific environmental policy. We present the main outcomes and the challenges faced in trying to include scientific data in the decision-making process. We also present current and future challenges in the New Forest Act implementation that could be solved with scientific evidence. The lessons learned showed that even designing the project in order to meet the needs to support the implementation of the environmental policy, avoiding difficulties normally pointed out by similar projects, there was a great difficulty for scientific contributions to be adopted in the decision-making process. Most of the scientific information and advice, even after discussion and common understanding among a diverse stakeholder group, were ignored or over-ruled in the final decision-making phases.


Resumo Os ecossistemas naturais estão sob grave ameaça em todo o mundo e as políticas ambientais são essenciais para minimizar os impactos presentes e futuros na biodiversidade, nos serviços ecossistêmicos e nas mudanças climáticas. O Novo Código Florestal no Brasil é a principal política de proteção da vegetação nativa em terras privadas, que compreende 54% da vegetação nativa remanescente brasileira. No entanto, os conflitos entre as preocupações ambientais e agrícolas na sua implementação exigem soluções equilibradas e baseadas em evidências científicas. Para enfrentar o desafio de aplicar a ciência no estabelecimento de políticas ambientais, desenvolvemos um projeto científico financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) para apoiar a implementação do Novo Código Florestal no Estado de São Paulo, como parte do Programa Biota/FAPESP. O projeto foi conduzido de forma diferente de um projeto de pesquisa regular: o objetivo amplo foi fornecer suporte científico para a implementação do Novo Código Florestal pelo Estado, a partir de uma interação participativa entre as partes interessadas para construir objetivos específicos, métodos e discussão de resultados, dentro de uma equipe de pesquisa interdisciplinar e intersetorial. Aqui, apresentamos as lições aprendidas durante e após os quatro anos de desenvolvimento do projeto de pesquisa para avaliar como o conhecimento científico pode ser produzido e adotado na implementação de uma política ambiental específica. Apresentamos os principais resultados e os desafios enfrentados na tentativa de incluir dados científicos no processo decisório. Apresentamos também desafios atuais e futuros na implementação do Novo Código Florestal que podem ser resolvidos com evidências científicas. As lições aprendidas mostraram que mesmo concebendo o projeto de forma a atender as necessidades de apoio à implementação da política ambiental, evitando dificuldades normalmente apontadas por projetos semelhantes, houve uma grande dificuldade para que contribuições científicas fossem adotadas no processo decisório. A maioria das informações e conselhos científicos, mesmo após discussão e entendimento comum entre um grupo diversificado de partes interessadas, foi ignorada nas fases finais de tomada de decisão.

3.
Ecol Appl ; 31(7): e02414, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260786

RESUMO

Ensuring a sufficient and adequate supply of water for humans and ecosystems is a pressing environmental challenge. The expansion of agricultural and urban lands has jeopardized watershed ecosystem services and a changing climate poses additional risks for regional water supply. We used stream water quality data collected between 2000 and 2014, coupled with detailed precipitation and land cover information, to investigate the effects of landscape composition and short-term precipitation variability on the quality of water resources in the state of São Paulo, Brazil. The state is home to over 45 million people and has a long history of human landscape modification. A severe drought in 2014-2015 led to a major water crisis and highlighted the fragility of the regional water supply system. We found that human-dominated watersheds had lower overall water quality when compared to forested watersheds, with urban cover showing the most detrimental impacts on water quality. Forest cover was associated with a better overall water quality across the studied watersheds, with forested watersheds having low turbidity and high dissolved oxygen. High precipitation led to increased turbidity and fecal coliforms levels and lower dissolved oxygen in streams but these effects depended on watershed land cover. High precipitation diluted concentrations of nitrogen and dissolved solids in highly urbanized watersheds but exacerbated turbidity in pasture-dominated watersheds. Given the high costs of water treatment in densely populated regions, there is a pressing need to plan and manage landscapes in order to ensure adequate water resources. In tropical regions, maintaining or restoring native vegetation cover is a promising intervention to sustain adequate water quality.


Assuntos
Rios , Qualidade da Água , Brasil , Mudança Climática , Ecossistema , Monitoramento Ambiental , Florestas , Humanos
4.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523918

RESUMO

Understanding the dynamics of native forest loss and gain is critical for biodiversity conservation and ecosystem services, especially in regions experiencing intense forest transformations. We quantified native forest cover dynamics on an annual basis from 1990 to 2017 in Brazil's Atlantic Forest. Despite the relative stability of native forest cover during this period (~28 Mha), the ongoing loss of older native forests, mostly on flatter terrains, have been hidden by the increasing gain of younger native forest cover, mostly on marginal lands for mechanized agriculture. Changes in native forest cover and its spatial distribution increased forest isolation in 36.4% of the landscapes. The clearance of older forests associated with the recut of 27% of younger forests has resulted in a progressive rejuvenation of the native forest cover. We highlight the need to include native forest spatiotemporal dynamics into restoration programs to better estimate their expected benefits and unexpected problems.

5.
Sci Total Environ ; 752: 141967, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892056

RESUMO

Hantavirus Cardiopulmonary Syndrome (HCPS) is a disease with high human lethality rates, whose transmission risk is directly related to the abundance of reservoir rodents. In the Brazilian Atlantic forest, the main reservoirs species, Oligoryzomys nigripes and Necromys lasiurus, are thought to increase in abundance with deforestation. Therefore, forest restoration may contribute to decrease HCPS transmission risk, a topic still unexplored, especially in tropical regions. Aiming at filling this research gap, we quantified the potential of forest restoration, as required by the current environmental legislation, to reduce the abundance of Hantavirus reservoir rodents in the Brazilian Atlantic Forest. Using a dataset on small mammal communities sampled at 104 sites, we modeled how the abundance of these two rodent species change with the percentage of forest cover and forest edge density. From the best model, we extrapolated rodent abundance to the entire Atlantic Forest, considering two scenarios: current and restored forest cover. Comparing the estimated abundance between these two scenarios, we show that forest restoration can reduce the abundance of O. nigripes up to 89.29% in 43.43% of Atlantic forest territory. For N. lasiurus, abundance decreased up to 46% in 44% of the Atlantic forest. To our knowledge, this is the first study linking forest restoration and zoonotic diseases. Our results indicate that forest restoration would decrease the chance of HCPS transmission in ~45% of the Atlantic forest, making the landscape healthier to ~2,8 million people living within this area. This positive effect of restoration on disease regulation should be considered as an additional argument to encourage and promote forest restoration in tropical areas around the world.


Assuntos
Orthohantavírus , Animais , Brasil , Florestas , Humanos , Roedores , Zoonoses
9.
Ecology ; 100(6): e02647, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845354

RESUMO

Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820-2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities.

10.
Nat Ecol Evol ; 3(1): 62-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568285

RESUMO

International commitments for ecosystem restoration add up to one-quarter of the world's arable land. Fulfilling them would ease global challenges such as climate change and biodiversity decline but could displace food production and impose financial costs on farmers. Here, we present a restoration prioritization approach capable of revealing these synergies and trade-offs, incorporating ecological and economic efficiencies of scale and modelling specific policy options. Using an actual large-scale restoration target of the Atlantic Forest hotspot, we show that our approach can deliver an eightfold increase in cost-effectiveness for biodiversity conservation compared with a baseline of non-systematic restoration. A compromise solution avoids 26% of the biome's current extinction debt of 2,864 plant and animal species (an increase of 257% compared with the baseline). Moreover, this solution sequesters 1 billion tonnes of CO2-equivalent (a 105% increase) while reducing costs by US$28 billion (a 57% decrease). Seizing similar opportunities elsewhere would offer substantial contributions to some of the greatest challenges for humankind.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Brasil , Sequestro de Carbono , Análise Custo-Benefício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA