Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1399363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005937

RESUMO

Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods: M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results: We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion: These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.

2.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38894528

RESUMO

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Assuntos
5'-Nucleotidase , Neoplasias de Mama Triplo Negativas , Humanos , 5'-Nucleotidase/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Movimento Celular , Adenosina/metabolismo , Adenosina/análogos & derivados
3.
Front Physiol ; 15: 1352766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725570

RESUMO

Autophagy is a cellular degradation pathway mediated by highly conserved autophagy-related genes (Atgs). In our previous work, we showed that inhibiting autophagy under starvation conditions leads to significant physiological changes in the insect vector of Chagas disease Rhodnius prolixus; these changes include triacylglycerol (TAG) retention in the fat body, reduced survival and impaired locomotion and flight capabilities. Herein, because it is known that autophagy can be modulated in response to various stimuli, we further investigated the role of autophagy in the fed state, following blood feeding. Interestingly, the primary indicator for the presence of autophagosomes, the lipidated form of Atg8 (Atg8-II), displayed 20%-50% higher autophagic activation in the first 2 weeks after feeding compared to the third week when digestion was complete. Despite the elevated detection of autophagosomes, RNAi-mediated suppression of RpAtg6 and RpAtg8 did not cause substantial changes in TAG or protein levels in the fat body or the flight muscle during blood digestion. We also found that knockdown of RpAtg6 and RpAtg8 led to modest modulations in the gene expression of essential enzymes involved in lipid metabolism and did not significantly stimulate the expression of the chaperones BiP and PDI, which are the main effectors of the unfolded protein response. These findings indicate that impaired autophagy leads to slight disturbances in lipid metabolism and general cell proteostasis. However, the ability of insects to fly during forced flight until exhaustion was reduced by 60% after knockdown of RpAtg6 and RpAtg8. This change was accompanied by TAG and protein increases as well as decreased ATP levels in the fat body and flight muscle, indicating that autophagy during digestion, i.e., under fed conditions, is necessary to sustain high-performance activity.

4.
Eur J Protistol ; 94: 126086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688045

RESUMO

Acanthamoeba castellanii, a free-living amoeba, can be pathogenic to humans causing a corneal infection named Acanthamoeba keratitis (AK). The mannose-binding protein (MBP) is well established as the major factor related to Acanthamoeba pathogenesis. However, additional factors that participate in the adhesion process and protect trophozoites from cytolytic effects caused by host immune responses remain unknown. Ectonucleotidases, including 3'-nucleotidase/nuclease (3'-NT/NU), a bifunctional enzyme that was recently reported in A. castellanii, are frequently related to the establishment of parasitic infections. We verified that trophozoites can hydrolyze 3'-AMP, and this activity is similar to that observed in other protists. The addition of 3'-AMP increases the adhesion of trophozoites to LLC-MK2 epithelial cells, and this stimulation is completely reversed by DTT, an inhibitor of ecto-3'-nucleotidase activity. Lesions in corneal cells caused by AK infection may elevate the extracellular level of 3'-AMP. We believe that ecto-3'-nucleotidase activity can modulate the host immune response, thus facilitating the establishment of parasitic infection. This activity results from the generation of extracellular adenosine, which can bind to purinergic receptors present in host immune cells. Positive feedback may occur in this cascade of events once the ecto-3'-nucleotidase activity of trophozoites is increased by the adhesion of trophozoites to LLC-MK2 cells.


Assuntos
Acanthamoeba castellanii , Adenosina , Adesão Celular , Trofozoítos , Acanthamoeba castellanii/enzimologia , Adenosina/metabolismo , Linhagem Celular , Animais , Nucleotidases/metabolismo , Células Epiteliais/parasitologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38042331

RESUMO

Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.


Assuntos
Lipase , Rhodnius , Animais , Feminino , Lipase/genética , Lipase/metabolismo , Rhodnius/genética , Casca de Ovo/metabolismo , Mobilização Lipídica , Reprodução , Triglicerídeos/metabolismo , Locomoção , Insetos Vetores , Mamíferos/metabolismo
6.
s.l; s.n; 2024. 19 p. tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1561218

RESUMO

Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells­glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host­pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron­glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae­Schwann cell interaction. Methods: M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. nzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR nalysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzymelinked immunosorbent assay. Results: We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion: These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.


Assuntos
Animais , Camundongos , Hanseníase/microbiologia , Viabilidade Microbiana , Gotículas Lipídicas , Camundongos Nus , Mycobacterium leprae/crescimento & desenvolvimento
7.
Purinergic Signal ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975950

RESUMO

Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 µM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.

8.
Eur J Protistol ; 91: 126026, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871554

RESUMO

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Humanos , Animais , Manose/metabolismo , Vanadatos , Adesão Celular/fisiologia , Sódio , Trofozoítos
9.
Insect Biochem Mol Biol ; 158: 103956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196906

RESUMO

ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase α and ß family, including the α and ß subunits of ATP synthase (RpATPSynα and RpATPSynß), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organsn highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynß knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynß increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynα knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.


Assuntos
Rhodnius , Feminino , Animais , Rhodnius/genética , Rhodnius/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo Energético , Triglicerídeos/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Exp Parasitol ; 247: 108492, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841468

RESUMO

Mucosal-associated parasites, such as Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis, have significant clinical relevance. The pathologies associated with infection by these parasites are among those with the highest incidence of gastroenteritis (giardiasis and amoebiasis) and sexually transmitted infections (trichomoniasis). The treatment of these diseases is based on drugs that act on the anaerobic metabolism of these parasites, such as nitroimidazole and benzimidazole derivatives. One interesting feature of parasites is their ability to produce ATP under anaerobic conditions. Due to the absence of enzymes capable of producing ATP under anaerobic conditions in the vertebrate host, they have become interesting therapeutic targets. This review discusses anaerobic energy metabolism in mucosal-associated parasites, focusing on the anaerobic metabolism of pyruvate, the importance of these enzymes as therapeutic targets, and the importance of treating their infections.


Assuntos
Antiprotozoários , Entamoeba histolytica , Parasitos , Trichomonas vaginalis , Animais , Humanos , Parasitos/metabolismo , Anaerobiose , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Entamoeba histolytica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA