Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Acta Neuropsychiatr ; : 1-13, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770713

RESUMO

OBJECTIVE: To investigate the effects of cannabidiol (CBD) on emotional and cognitive symptoms in rats with intra-nigral 6-hydroxydopamine (6-OHDA) lesions. METHODS: Adult male Wistar rats received bilateral intranigral 6-OHDA infusions and were tested in a battery of behavioural paradigms to evaluate non-motor symptoms. The brains were obtained to evaluate the effects of CBD on hippocampal neurogenesis. RESULTS: 6-OHDA-lesioned rats exhibited memory impairments and despair-like behaviour in the novelty-suppressed feeding test and forced swim test, respectively. The animals also exhibited dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc), striatum, and ventral tegmental area and a reduction of hippocampal neurogenesis. CBD decreased dopaminergic neuronal loss in the SNpc, reduced the mortality rate and decreased neuroinflammation in 6-OHDA-lesioned rats. In parallel, CBD prevented memory impairments and attenuated despair-like behaviour that were induced by bilateral intranigral 6-OHDA lesions. Repeated treatment with CBD favoured the neuronal maturation of newborn neurons in the hippocampus in Parkinsonian rats. CONCLUSION: The present findings suggest a potential beneficial effect of CBD on non-motor symptoms induced by intra-nigral 6-OHDA infusion in rats.

2.
Neurotox Res ; 41(4): 311-323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36922461

RESUMO

Phosphodiesterase 4 inhibitors (PDE4-I), which selectively increase cyclic adenosine monophosphate (cAMP) levels, have shown neuroprotective effects after several neurological injuries inducing blood-brain barrier (BBB) damage including local/focal cerebral ischemia. The present investigated whether roflumilast confers BBB neuroprotection in the hippocampus after transient global cerebral ischemia (TGCI) in rats. TGCI resulted in whole BBB disruption as measured by the increase of Evans blue (EB) and IgG extravasation, neurodegeneration, and downregulation of claudin-5 and endothelial nitric oxide synthase (eNOS) levels in the CA1 hippocampal subfield of ischemic rats. Roflumilast attenuated BBB disruption and restored the levels of eNOS in the CA1 hippocampal area. Moreover, roflumilast increased the levels of B2 cell lymphoma (BcL-2) and neuron-glial antigen-2 (NG2) in the CA1 subfield after global ischemia in rats. The protective effects of roflumilast against TGCI-induced BBB breakdown might involve preservation of BBB integrity, vascularization and angiogenesis, and myelin repair.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo
3.
Neurobiol Aging ; 124: 52-59, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739621

RESUMO

5-HT1A serotonin receptors may play a role in cognitive function changes related to advanced age. Here, we investigated the effects of acute and repeated treatment with NLX-101 (F15599), a postsynaptic 5-HT1A receptor-biased agonist, and F13714, a presynaptic 5-HT1A receptor-biased agonist on spatial object pattern separation (OPS) in aged (22-24 months) rats. Neuroplasticity markers including brain-derived neurotrophic factor, PSD95, synaptophysin, and doublecortin were evaluated in the hippocampus. Unlike younger rats, aged rats were incapable of discriminating any new position of the objects in the arena, reflecting the detrimental effect of aging on pattern separation. However, aged animals treated with NLX-101 showed a significant cognitive improvement in the OPS test, accompanied by increases in hippocampal brain-derived neurotrophic factor and PSD95 protein levels. In contrast, no improvement in OPS performance was observed when aged rats received F13714. Both F13714 and NLX-101 increased the number of newborn neurons in the hippocampi of aged rats. These findings provide a rationale for targeting post-synaptic 5-HT1A as a treatment for cognitive deficits related to aging.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor 5-HT1A de Serotonina , Ratos , Animais , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina
4.
Tissue Cell ; 81: 102033, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764059

RESUMO

AIMS: Brain ischemia and reperfusion may occur in several clinical conditions that have high rates of mortality and disability, compromising an individual's quality of life. Brain injury can affect organs beyond the brain, such as the gastrointestinal tract. The present study investigated the effects of cerebral ischemia on the ileum and jejunum during a chronic reperfusion period by examining oxidative stress, inflammatory parameters, and the myenteric plexus in Wistar rats. MAIN METHODS: Ischemia was induced by the four-vessel occlusion model for 15 min with 52 days of reperfusion. Oxidative stress and inflammatory markers were evaluated using biochemical techniques. Gastrointestinal transit time was evaluated, and immunofluorescence techniques were used to examine morpho-quantitative aspects of myenteric neurons. KEY FINDINGS: Brain ischemia and reperfusion promoted inflammation, characterized by increases in myeloperoxidase and N-acetylglycosaminidase activity, oxidative stress, and lipid hydroperoxides, decreases in superoxide dismutase and catalase activity, a decrease in levels of reduced glutathione, neurodegeneration in the gut, and slow gastrointestinal transit. SIGNIFICANCE: Chronic ischemia and reperfusion promoted a slow gastrointestinal transit time, oxidative stress, and inflammation and neurodegeneration in the small intestine in rats. These findings indicate that the use of antioxidant and antiinflammatory molecules even after a long period of reperfusion may be useful to alleviate the consequences of this pathology.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Wistar , Qualidade de Vida , Traumatismo por Reperfusão/patologia , Intestino Delgado/patologia , Estresse Oxidativo , Isquemia Encefálica/patologia , Antioxidantes/farmacologia , Isquemia , Inflamação/patologia , Reperfusão
5.
Mol Neurobiol ; 58(10): 5338-5355, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302281

RESUMO

Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.


Assuntos
Canabidiol/uso terapêutico , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Canabidiol/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Sinapses/metabolismo , Sinapses/patologia
6.
Behav Pharmacol ; 32(6): 459-471, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320520

RESUMO

Inhibition of phosphodiesterase 4 (PDE4) is a promising pharmacological strategy for the treatment of cerebral ischemic conditions. To increase the relevance and increase the translational value of preclinical studies, it is important to conduct experiments using different animal species and strains, different animal models, and to evaluate long-term functional outcomes after cerebral ischemia. In the present study, the effects of the selective PDE4 inhibitor roflumilast were evaluated in vivo and in vitro. Balb/c mice were subjected to bilateral common carotid artery occlusion (BCCAO) and tested during 21 days in multiple behavioral tasks to investigate the long-term effects of roflumilast on functional recovery. The effects of roflumilast were also investigated on hippocampal cell loss, white matter injury, and expression of neuroinflammatory markers. Roflumilast prevented cognitive and emotional deficits induced by BCCAO in mice. Roflumilast also prevented neurodegeneration and reduced the white matter damage in the brain of ischemic animals. Besides, roflumilast decreased Iba-1 (microglia marker) levels and increased Arginase-1 (Arg-1; microglia M2 phenotype marker) levels in the hippocampus of these mice. Likewise, roflumilast suppressed inducible nitric oxide synthase (microglia M1 phenotype marker) expression and increased Arg-1 levels in a primary mouse microglia culture. These findings support evidence that PDE4 inhibition by roflumilast might be beneficial in cerebral ischemic conditions. The neuroprotective effects of roflumilast appear to be mediated by a decrease in neuroinflammation.


Assuntos
Aminopiridinas/farmacologia , Arginase/metabolismo , Benzamidas/farmacologia , Isquemia Encefálica , Proteínas de Ligação ao Cálcio/metabolismo , Disfunção Cognitiva , Proteínas dos Microfilamentos/metabolismo , Doenças Neuroinflamatórias , Animais , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/imunologia , Isquemia Encefálica/psicologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Ciclopropanos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Resultado do Tratamento , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo
7.
Eur J Neurosci ; 53(6): 1738-1751, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33522084

RESUMO

An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.


Assuntos
Canabidiol , Disfunção Cognitiva , Animais , Isquemia , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptor 5-HT1A de Serotonina
8.
Eur J Neurosci ; 53(4): 1171-1188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340424

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Benzamidas , Isquemia Encefálica/tratamento farmacológico , Ciclopropanos , Proteína Duplacortina , Hipocampo , Ratos , Memória Espacial
9.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165934, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827650

RESUMO

Cerebral ischemia-induced hyperglycemia has been reported to accentuate neurological damage following focal or global cerebral ischemia. Hyperglycemia found in rats following focal brain ischemia occurs in the first 24 h and has been claimed to be caused by increased liver gluconeogenesis and insulin resistance. However, liver gluconeogenesis and the mechanisms leading to hyperglycemia after global cerebral ischemia remain uncertain. This study investigated the glycemic homeostasis and hepatic metabolism in rats after transient four-vessel occlusion (4-VO)-induced global cerebral ischemia, an event that mimics to a certain degree the situation during cardiac arrest. Several metabolic fluxes were measured in perfused livers. Activities and mRNA expressions of hepatic glycolysis and glyconeogenesis rate-limiting enzymes were assessed as well as respiratory activity of hepatic isolated mitochondria. Global cerebral ischemia was associated with hyperglycemia and hyperinsulinemia 24 h after ischemia. Insulin resistance developed later and was prominent after the 5th day. Hepatic anabolism and catabolism were both modified in a complex and time-dependent way. Gluconeogenesis, ß-oxidation, ketogenesis and glycolysis were diminished at 24 h after ischemia. At 5 days after ischemia glycolysis had normalized, but gluconeogenesis, ketogenesis and ß-oxidation were accelerated. The overall metabolic modifications suggest that a condition of depressed metabolism was established in response to the new conditions generated by the cerebral global ischemia. Whether the modifications in the liver metabolism found in rats after the ischemic insult can be translated to individuals following global brain ischemia remains uncertain, but the results of this study are hoped to encourage further investigations.


Assuntos
Glicemia/metabolismo , Isquemia Encefálica/metabolismo , Homeostase , Fígado/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
10.
Artigo em Inglês | MEDLINE | ID: mdl-31809832

RESUMO

Pharmacological interventions that selectively activate serotonin 5-hydroxytryptramine-1A (5-HT1A) heteroreceptors may prevent or attenuate the consequences of brain ischemic episodes. The present study investigated whether the preferential 5-HT1A postsynaptic receptor agonist NLX-101 (a.k.a. F15599) mitigates cognitive and emotional impairments and affects neuroplasticity in mice that are subjected to the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia. The selective serotonin reuptake inhibitor escitalopram (Esc) was used for comparative purposes because it is able to decrease morbidity and improve recovery in stroke patients and ischemic rodents. Sham and BCCAO mice received daily doses of NLX-101 (0.32 mg/kg, i.p) or Esc (20 mg/kg, i.p) for 28 days. During this period, they were evaluated for locomotor activity, anxiety- and despair-related behaviors and hippocampus-dependent cognitive function, using the open field, elevated zero maze, forced swim test and object location test, respectivelly. The mice's brains were processed for biochemical and histological analyses. BCCAO mice exhibited high anxiety and despair-like behaviors and performed worse than controls in the cognitive assessment. BCCAO induced neuronal and dendritic spine loss and decreases in the protein levels of neuronal plasticity markers, including brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein-95 (PSD-95), in prefrontal cortex (PFC) and hippocampus. NLX-101 and Esc attenuated cognitive impairments and despair-like behaviors in BCCAO mice. Only Esc decreased anxiety-like behaviors due to brain ischemia. Both NLX-101 and Esc blocked the increase in plasma corticosterone levels and, restored BDNF, SYN and PSD-95 protein levels in the hippocampus. Moreover, both compounds impacted positively dentritic remodeling in the hippocampus and PFC of ischemic mice. In the PFC, NLX-101 increased the BDNF protein levels, while Esc in turn, attenuated the decrease in the PSD-95 protein levels induced by BCCAO. The present results suggest that activation of post-synaptic 5-HT1A receptors is the molecular mechanism for serotonergic protective effects in BCCAO. Moreover, post-synaptic biased agonists such as NLX-101 might constitute promising therapeutics for treatment of functional and neurodegenerative outcomes of brain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Receptor 5-HT1A de Serotonina/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Recuperação de Função Fisiológica/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA