Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0245877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33690637

RESUMO

The Argentine Black and White Tegu (Salvator merianae, formerly Tupinambis merianae) is a large lizard from South America. Now established and invasive in southern Florida, and it poses threats to populations of many native species. Models suggest much of the southern United States may contain suitable temperature regimes for this species, yet there is considerable uncertainty regarding either the potential for range expansion northward out of tropical and subtropical zones or the potential for the species establishing elsewhere following additional independent introductions. We evaluated survival, body temperature, duration and timing of winter dormancy, and health of wild-caught tegus from southern Florida held in semi-natural enclosures for over a year in Auburn, Alabama (> 900 km northwest of capture location). Nine of twelve lizards emerged from winter dormancy and seven survived the greater-than-one-year duration of the study. Average length of dormancy (176 d) was greater than that reported in the native range or for invasive populations in southern Florida and females remained dormant longer than males. Tegus grew rapidly throughout the study and the presence of sperm in the testes of males and previtellogenic or early vitellogenic follicles in female ovaries at the end of our study suggest the animals would have been capable of reproduction the following spring. The survival and overall health of the majority of adult tegus in our study suggests weather and climate patterns are unlikely to prevent survival following introduction in many areas of the United States far from their current invasive range.


Assuntos
Espécies Introduzidas , Lagartos/fisiologia , Estações do Ano , Animais , Metabolismo Energético , Feminino , Lagartos/metabolismo , Masculino , Reprodução , Análise de Sobrevida , Temperatura
2.
PLoS Genet ; 6(12): e1001261, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203443

RESUMO

Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.


Assuntos
Surtos de Doenças , Interações Hospedeiro-Parasita , Sarcocystis/fisiologia , Sarcocistose/veterinária , Autofertilização , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Animais , Brasil/epidemiologia , Genótipo , Humanos , Dados de Sequência Molecular , Oocistos/crescimento & desenvolvimento , Oocistos/fisiologia , Lontras/parasitologia , Recombinação Genética , Sarcocystis/classificação , Sarcocystis/genética , Sarcocystis/crescimento & desenvolvimento , Sarcocistose/epidemiologia , Sarcocistose/parasitologia , Toxoplasma/classificação , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA