Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 83(2): 459-469, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34052880

RESUMO

Ancestral adaptations to tropical-like climates drive most multicellular biogeography and macroecology. Observational studies suggest that this niche conservatism could also be shaping unicellular biogeography and macroecology, although evidence is limited to Acidobacteria and testate amoebae. We tracked the phylogenetic signal of this niche conservatism in far related and functionally contrasted groups of common soil protists (Bacillariophyta, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida) along a humid but increasingly cold elevational gradient in Switzerland. Protist diversity decreased, and the size of the geographic ranges of taxa increased with elevation and associated decreasing temperature (climate), which is consistent with a macroecological pattern known as the Rapoport effect. Bacillariophyta exhibited phylogenetically overdispersed communities assembled by competitive exclusion of closely related taxa with shared (conserved) niches. By contrast, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida exhibited phylogenetically clustered communities assembled by habitat filtering, revealing the coexistence of closely related taxa with shared (conserved) adaptations to cope with the humid but temperate to cold climate of the study site. Phylobetadiversity revealed that soil protists exhibit a strong phylogenetic turnover among elevational sites, suggesting that most taxa have evolutionary constraints that prevent them from colonizing the colder and higher sites of the elevation gradient. Our results suggest that evolutionary constraints determine how soil protists colonize climates departing from warm and humid conditions. We posit that these evolutionary constraints are linked to an ancestral adaptation to tropical-like climates, which limits their survival in exceedingly cold sites. This niche conservatism possibly drives their biogeography and macroecology along latitudinal and altitudinal climatic gradients.


Assuntos
Cilióforos , Solo , Biodiversidade , Cilióforos/genética , Ecossistema , Filogenia
2.
Eur J Protistol ; 80: 125806, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34280730

RESUMO

Testate amoebae are a diverse group of shelled protists frequently used as model organisms in microbial biogeography. Relatively few species have been reported for the Southern Hemisphere, however, it remains unclear whether this lower diversity is real or an artifact of under-sampling or misidentifications, which would reduce their potential to address macroecological questions. We evaluated testate amoebae diversity from the full range of habitats occurring within two Tierra del Fuego peatlands and compared it with the reported diversity for the area and from the Northern Hemisphere peatlands. We recorded 87 species, of which 69 are new for the region and 45 of them probably new to science and likely to have restricted geographical distributions. Combined with previous studies, the total diversity of testate amoebae only from Tierra del Fuego peatlands now reaches 119, as compared with 183 reported from all Northern Hemisphere peatlands. Our results demonstrate that the number of Gondwanian and Neotropical endemic testate amoeba may be substantially higher than currently known. Previous reports of Holarctic taxa in Tierra del Fuego may result from forcing the identification of morphotypes to the descriptions in the most common literature (force-fitting) South American species into species common in literature from other regions.


Assuntos
Amoeba , Biodiversidade , Ecossistema , Amoeba/classificação , Argentina , Solo
3.
Environ Pollut ; 249: 949-958, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30965547

RESUMO

Usage of neonicotinoids is common in all agricultural regions of the world but data on environmental contamination in tropical regions is scarce. We conducted a survey of five neonicotinoids in soil, water and sediment samples along gradients from crops fields to protected lowland tropical forest, mangroves and wetlands in northern Belize, a region of high biodiversity value. Neonicotinoid frequency of detection and concentrations were highest in soil (68%) and lowest in water (12%). Imidacloprid was the most common residue reaching a maximum of 17.1 ng/g in soil samples. Concentrations in soils differed among crop types, being highest in melon fields and lowest in banana and sugarcane fields. Residues in soil declined with distance to the planted fields, with clothianidin being detected at 100 m and imidacloprid at more than 10 km from the nearest applied field. About half (47%) of the sediments collected contained residues of at least one compound up to 10 km from the source. Total neonicotinoid concentrations in sediments (range 0.014-0.348 ng/g d. w.) were about 10 times lower than in soils from the fields, with imidacloprid being the highest (0.175 ng/g). A probabilistic risk assessment of the residues in the aquatic environment indicates that 31% of sediment samples pose a risk to invertebrate aquatic and benthic organisms by chronic exposure, whereas less than 5% of sediment samples may incur a risk by acute exposure. Current residue levels in water samples do not appear to pose risks to the aquatic fauna. Fugacity modeling of the four main compounds detected suggest that most of the dissipation from the agricultural fields occurs via runoff and leaching through the porous soils of this region. We call for better monitoring of pesticide contamination and invertebrate inventories and finding alternatives to the use of neonicotinoids in agriculture.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Sedimentos Geológicos/química , Neonicotinoides/análise , Praguicidas/análise , Solo/química , Água/química , Animais , Belize , Medição de Risco , Inquéritos e Questionários , Áreas Alagadas
4.
Eur J Protistol ; 61(Pt A): 253-264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802879

RESUMO

Quadrulella (Amoebozoa, Arcellinida, Hyalospheniidae) is a genus of testate amoebae with unmistakable morphology, which secretes characteristic square plates to reinforce the test. They are mainly known from fens and freshwater habitats and have never been documented in deserts. We describe a new species, Quadrulella texcalense, from biological soil crusts in the intertropical desert of Tehuacán (state of Puebla, Mexico). Quadrulella texcalense occurred only at altitudes between 2140 and 2221m.a.s.l., together with the bryophyte genera Pseudocrossidium, Weissia, Bryum, Didymodon, Neohyophyla and Aloina. The soil was extremely dry (moisture of 1.97-2.6%), which contrasts sharply with previous reports for the Quadrulella genus. Single cell mitochondrial cytochrome oxidase I (COI) barcoding of thirteen isolated cells showed an important morphological variability despite having all the same COI barcode sequence. Quadrulella texcalense was placed in a tree containing other Hyalsopheniidae, including a newly barcoded South African species, Q. elegans. Q. texcalense unambiguously branched within genus Quadrulella in a compact clade but with a long branch, suggesting accelerated evolution due to a transition towards a new environment and/or under-sampling.


Assuntos
Clima Desértico , Lobosea/classificação , Filogenia , Solo/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Lobosea/citologia , Lobosea/genética , México , Especificidade da Espécie
5.
Eur J Protistol ; 58: 175-186, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222945

RESUMO

Molecular phylogeny is an indispensable tool for assessing evolutionary relationships among protists. The most commonly used marker is the small subunit ribosomal RNA gene, a conserved gene present in many copies in the nuclear genomes. However, this marker is not variable enough at a fine-level taxonomic scale, and intra-genomic polymorphism has already been reported. Finding a marker that could be useful at both deep and fine taxonomic resolution levels seemed like a utopic dream. We designed Amoebozoa-specific primers to amplify a region including partial sequences of two subunits of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene (NAD9/NAD7). We applied them to arcellinids belonging to distantly related genera (Arcella, Difflugia, Netzelia and Hyalosphenia) and to Arcellinid-rich environmental samples to obtain additional Amoebozoa sequences. Tree topology was congruent with previous phylogenies, all nodes being highly supported, suggesting that this marker is well-suited for deep phylogenies in Arcellinida and perhaps Amoebozoa. Furthermore, it enabled discrimination of close-related taxa. This short genetic marker (ca. 250bp) can therefore be used at different taxonomic levels, due to a fast-varying intergenic region presenting either a small intergenic sequence or an overlap, depending on the species.


Assuntos
Amebozoários/classificação , Amebozoários/genética , Código de Barras de DNA Taxonômico/normas , NADH Desidrogenase/genética , Filogenia , Amebozoários/enzimologia , Genes de Protozoários/genética , Marcadores Genéticos/genética , Especificidade da Espécie
6.
Eur J Protistol ; 55(Pt B): 152-164, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27352775

RESUMO

Cryptotephra (particles <125µm) is a key record for monitoring past and current volcanic activity. However, its extraction from the host sediment and analysis is often long and difficult because of its small size. Finding a simple method to extract cryptotephra from environmental samples would therefore make its analysis much easier. We hypothesized that arcellinid testate amoebae may hold such a potential. These free-living shelled protists are among the earliest microorganisms to colonize volcanic tephra, and build their shell by agglutinating minerals from their environment. We analyzed by X-ray Spectrometry the mineral signature of tephra from the 2011 Puyehue-Cordon Caulle Volcanic Complex (Chile) eruption ash fallout and compared it to that of the shells of 51 individual testate amoebae (three individuals from each of 17 species) from 13 samples collected at different distances from the active vent. The mineral composition of particles within shells closely matched that of similar size class particles from their environment. The capacity of testate amoebae to randomly use mineral grains from their environment makes it possible to use their shells to assess the mineral composition of cryptotephra from soil, peat or sediment samples. Testate amoebae therefore represent the microbial world's version of Cinderella's helping pigeons.


Assuntos
Amoeba/química , Geologia/métodos , Minerais/análise , Erupções Vulcânicas/análise , Chile , Análise Multivariada
7.
Cladistics ; 32(6): 606-623, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34727671

RESUMO

Species diversity in most protistan groups has been underestimated. Many morpho-species are in fact complexes that require detailed morphometric studies to be discriminated. However, which traits can be used for species descriptions remains in many cases unclear. The testate amoeba genus Quadrulella produces self-secreted, siliceous plates with a very characteristic square shape-such plates were assumed to be synapomorphic of the genus. Here we demonstrate that Quadrulella symmetrica (the most common Holarctic species) is not monophyletic. Square plate size and arrangement, test size and general shape are efficient criteria for species discrimination. Based on morphology and sequence data, we describe Quadrulella variabilis sp. nov. from Switzerland, and Quadrulella madibai sp. nov. from South Africa, and confirm the validity of Q. alata. The former species Q. subcarinata does not belong to the genus Quadrulella. We therefore transfer this species to the new genus Mrabella gen. nov. Our results show that hyalosphenids presenting siliceous square shell plates do not form a monophyletic clade. Several possible hypotheses about the origins of square plates are discussed. Additionally, this comprehensive phylogenetic analysis of the family Hyalospheniidae confirms that the genus Nebela is paraphyletic and needs to be divided into genera based on general shell shape: Nebela sensu stricto, Longinebela gen. nov., Planocarina gen. nov., Gibbocarina gen. nov., Cornutheca gen. nov. and Mrabella gen. nov.

8.
Eur J Protistol ; 51(5): 409-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26340665

RESUMO

Bringing together more than 170 years of data, this study represents the first attempt to construct a species checklist and analyze the diversity and distribution of testate amoebae in Chile, a country that encompasses the southwestern region of South America, countless islands and part of the Antarctic. In Chile, known diversity includes 416 testate amoeba taxa (64 genera, 352 infrageneric taxa), 24 of which are here reported for the first time. Species-accumulation plots show that in Chile, the number of testate amoeba species reported has been continually increasing since the mid-19th century without leveling off. Testate amoebae have been recorded in 37 different habitats, though they are more diverse in peatlands and rainforest soils. Only 11% of species are widespread in continental Chile, while the remaining 89% of the species exhibit medium or short latitudinal distribution ranges. Also, species composition of insular Chile and the Chilean Antarctic territory is a depauperated subset of that found in continental Chile. Nearly, the 10% of the species reported here are endemic to Chile and many of them are distributed only within the so-called Chilean biodiversity hotspot (ca. 25° S-47° S). These findings are here thoroughly discussed in a biogeographical and evolutionary context.


Assuntos
Amoeba/classificação , Biodiversidade , Amoeba/ultraestrutura , Lista de Checagem , Chile , Ecossistema , Microscopia Eletrônica de Varredura
9.
PeerJ ; 3: e1234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734499

RESUMO

The terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells. The two are unrelated phylogenetically and acquired biomineralizing capabilities independently. Hyalosphenids, a group within arcellinids, are predators of euglyphids. We demonstrate that hyalosphenids can construct shells using silica scales mineralized by the euglyphids. Parsimony analyses of the current hyalosphenid phylogeny indicate that the ability to "steal" euglyphid scales is most likely ancestral in hyalosphenids, implying that euglyphids should be older than hyalosphenids. However, exactly when euglyphids arose is uncertain. Current fossil record contains unambiguous euglyphid fossils that are as old as 50 million years, but older fossils are scarce and difficult to interpret. Poor taxon sampling of euglyphids has also prevented the development of molecular clocks. Here, we present a novel molecular clock reconstruction for arcellinids and consider the uncertainties due to various previously used calibration points. The new molecular clock puts the origin of hyalosphenids in the early Carboniferous (∼370 mya). Notably, this estimate coincides with the widespread colonization of land by Si-accumulating plants, suggesting possible links between the evolution of Arcellinid testate amoebae and the expansion of terrestrial habitats rich in organic matter and bioavailable Si.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA