Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 68(6): 481-491, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30944975

RESUMO

OBJECTIVE AND DESIGN: Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS: We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS: We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS: In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.


Assuntos
Citocinas/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/virologia , Camundongos Endogâmicos BALB C , Transdução de Sinais , Carga Viral
2.
Mediators Inflamm ; 2017: 2086840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894350

RESUMO

TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO-/- mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Flavonoides/farmacologia , Immunoblotting , Leucotrienos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fagocitose/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ratos , Ratos Wistar , Ovinos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Mediators Inflamm ; 2015: 435783, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814789

RESUMO

Platelets are crucial effector cells in hemostasis. In addition, platelets are increasingly recognized as major inflammatory cells with key roles in innate and adaptive immune responses. Activated platelets have key thromboinflammatory activities linking coagulation to inflammatory response in a variety of coagulation disorders and vasculopathies. Recently identified inflammatory activities of platelets include the synthesis of IL-1ß from spliced pre-RNA, as well as the presence and assembly of inflammasome which intermediate IL-1ß secretion. Here we review the mechanisms by which platelets activate translation machinery and inflammasome assembly to synthesize and release IL-1ß. The contributions of these processes to protective and pathogenic responses during infectious and inflammatory diseases are discussed.


Assuntos
Coagulação Sanguínea , Plaquetas/fisiologia , Doenças Transmissíveis/imunologia , Inflamassomos/fisiologia , Humanos , Inflamação/imunologia , Interleucina-1beta/metabolismo , Transdução de Sinais , Trombose/imunologia
4.
Shock ; 38(6): 620-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143054

RESUMO

The mechanism of immunosuppression induced by severe sepsis is not fully understood. The production of prostaglandin E2 (PGE2) during sepsis is well known, but its role in long-term consequences of sepsis has not been explored. The current study evaluates the role of PGE2 in the development of immunosuppression secondary to sepsis and its potential as therapeutic target. Cecal ligation and puncture was used as an experimental model for sepsis induction in Balb/c and C57BL/6 mice. Immunosuppression was evaluated by the response to secondary infection with Aspergillus fumigatus in sepsis survivors. The role of prostanoids was evaluated in vivo and in vitro by treatment with the cyclooxygenase inhibitor ketoprofen. Balb/c mice were more susceptible than C57BL/6 to severe sepsis and to secondary infection, with a greater mortality rate. Prostaglandin E2 concentrations found in bronchoalveolar lavage in sham and cecal ligation and puncture group after fungal challenge were much higher in Balb/c than in C57BL/6 mice. Ketoprofen treatment improved survival of septic Balb/c mice subjected to secondary infection, while also enhancing macrophage phagocytosis and neutrophil recruitment to the lungs. We identified a pivotal role for PGE2 acting on EP4 receptors in modulating cytokine production differentially by sham and septic macrophages. Furthermore, sepsis also altered key enzymes in PGE2 synthesis and degradation. Our results indicate the involvement of PGE2 in severe sepsis-induced immunosuppression. Inhibition of PGE2 production represents an attractive target to improve innate immune response against secondary infection in the immunocompromised host.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Dinoprostona/imunologia , Tolerância Imunológica/efeitos dos fármacos , Cetoprofeno/efeitos adversos , Sepse/imunologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Citocinas/imunologia , Modelos Animais de Doenças , Cetoprofeno/farmacologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Receptores de Prostaglandina E Subtipo EP4/imunologia , Sepse/tratamento farmacológico , Índice de Gravidade de Doença
5.
J Immunol ; 186(11): 6562-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536805

RESUMO

High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B(4) (LTB(4)). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B(4) receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO(-/-)) mice. Heme administration in vivo increased peritoneal levels of LTB(4) prior to and during neutrophil recruitment. Evidence that LTB(4) was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB(4) was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB(4) production or neutrophil influx; 4) increased levels of LTB(4) were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB(4). Our findings uncover a crucial role of LTB(4) in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.


Assuntos
Movimento Celular/efeitos dos fármacos , Heme/farmacologia , Leucotrieno B4/metabolismo , Neutrófilos/efeitos dos fármacos , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Células Cultivadas , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/metabolismo , Receptores do Leucotrieno B4/metabolismo , Tioglicolatos/farmacologia , p-Metoxi-N-metilfenetilamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA